K-Means聚类算法
k-means算法以k为参数,把n个对象分成k个簇,使簇内具有较高的相似度,而簇间的相似度较低。
- 随机选择k个点作为初始的聚类中心。
- 对于剩下的点,根据其与聚类中心的距离,将其归入最近的簇。
- 对每个簇,计算所有点的均值作为新的聚类中心。
重复2,3直到聚类中心不再发生改变
K-means的应用
数据介绍:
现有1999年全国31个省份城镇居民家庭平均每人全年消费性支出的八大主要变量数据,这八大变量分别是:食品、衣着、家庭设备用品及服务、医疗保健、交通和通讯、娱乐教育文化服务、居住以及杂项商品和服务。利用已有数据,对31个省份进行聚类。
实验目的:
通过聚类,了解1999年各个省份的消费水平在国内的情况。
技术路线:
sklearn.cluster.Kmeans
数据实例:
实现过程:
- 建立工程,导入sklearn相关包。
import numpy as np
from sklearn.cluster import KMeans - 加载数据,创建K-means算法实例,并进行训练,获得标签:
注意:调用K-Means方法所需参数:
n_clusters:用于指定聚类中心的个数
init:初始聚类中心的初始化方法(默认为k-means++)
max_iter:最大的迭代次数(默认为300)
data:加载的数据
label:聚类后各数据所属的标签
fit_predict():计算簇中心以及为簇分配序号 - 输出标签,查看结果
将城市按照消费水平n_clusters类,消费水平相近的城市聚集在一类中。
expense: 聚类中心点的数值加和,也就是平均消费水平。
import numpy as np
from sklearn.cluster import KMeans
def loadData(filePath):
fr = open(filePath,'r+')
lines = fr.readlines()
retData = []
retCityName = []
for line in lines:
items = line.strip().split(",")
retCityName.append(items[0])
retData.append([float(items[i]) for i in range(1,len(items))])
return retData,retCityName
if __name__ == '__main__':
data,cityName = loadData('city.txt')
km = KMeans(n_clusters=4)
label = km.fit_predict(data)
expenses = np.sum(km.cluster_centers_,axis=1)
#print(expenses)
CityCluster = [[],[],[],[]]
for i in range(len(cityName)):
CityCluster[label[i]].append(cityName[i])
for i in range(len(CityCluster)):
print("Expenses:%.2f" % expenses[i])
print(CityCluster[i])