Python机器学习应用-聚类之K-Means

K-Means聚类算法

k-means算法以k为参数,把n个对象分成k个簇,使簇内具有较高的相似度,而簇间的相似度较低。

  • 随机选择k个点作为初始的聚类中心。
  • 对于剩下的点,根据其与聚类中心的距离,将其归入最近的簇。
  • 对每个簇,计算所有点的均值作为新的聚类中心。
  • 重复2,3直到聚类中心不再发生改变

    Figure 1

K-means的应用

数据介绍:

现有1999年全国31个省份城镇居民家庭平均每人全年消费性支出的八大主要变量数据,这八大变量分别是:食品、衣着、家庭设备用品及服务、医疗保健、交通和通讯、娱乐教育文化服务、居住以及杂项商品和服务。利用已有数据,对31个省份进行聚类。

实验目的:

通过聚类,了解1999年各个省份的消费水平在国内的情况。

技术路线:

sklearn.cluster.Kmeans

数据实例:

这里写图片描述

实现过程:

  1. 建立工程,导入sklearn相关包
    import numpy as np
    from sklearn.cluster import KMeans
  2. 加载数据,创建K-means算法实例,并进行训练,获得标签
    这里写图片描述
    注意:调用K-Means方法所需参数
    n_clusters:用于指定聚类中心的个数
    init:初始聚类中心的初始化方法(默认为k-means++)
    max_iter:最大的迭代次数(默认为300)
    data:加载的数据
    label:聚类后各数据所属的标签
    fit_predict():计算簇中心以及为簇分配序号
  3. 输出标签,查看结果
    将城市按照消费水平n_clusters类,消费水平相近的城市聚集在一类中。
    expense: 聚类中心点的数值加和,也就是平均消费水平。
import numpy as np
from sklearn.cluster import KMeans


def loadData(filePath):
    fr = open(filePath,'r+')
    lines = fr.readlines()
    retData = []
    retCityName = []
    for line in lines:
        items = line.strip().split(",")
        retCityName.append(items[0])
        retData.append([float(items[i]) for i in range(1,len(items))])
    return retData,retCityName


if __name__ == '__main__':
    data,cityName = loadData('city.txt')
    km = KMeans(n_clusters=4)
    label = km.fit_predict(data)
    expenses = np.sum(km.cluster_centers_,axis=1)
    #print(expenses)
    CityCluster = [[],[],[],[]]
    for i in range(len(cityName)):
        CityCluster[label[i]].append(cityName[i])
    for i in range(len(CityCluster)):
        print("Expenses:%.2f" % expenses[i])
        print(CityCluster[i])

结果展示:

这里写图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值