基于深度学习的目标跟踪sort与deep-sort

本文详细介绍了基于深度学习的目标跟踪算法SORT和deep-SORT。SORT利用卡尔曼滤波和线性速度假设进行目标状态传播,而deep-SORT引入了深度学习特征进行表观匹配,有效缓解了遮挡和ID切换问题。文章探讨了两种算法的匹配策略、状态估计、轨迹管理和深度表观描述子的使用,强调了运动和表观信息的融合在目标跟踪中的重要性。
摘要由CSDN通过智能技术生成

SORT:

论文地址:http://arxiv.org/pdf/1602.00763.pdf

代码地址:https://github.com/abewley/sort

deep-SORT:

论文地址https://arxiv.org/pdf/1703.07402.pdf

代码链接:https://github.com/nwojke/deep_sort

 

SORT篇

文章方法

将tracking对象状态传播到未来的帧中(主要使用卡尔曼滤波以及线性速度的假设),将当前的检测与现有的对象相关联,并管理被跟踪对象的age。

1. 目标检测

使用Faster-RCNN进行detection,文章通过对比来说明detection的质量对后续的tracking至关重要。(我们可以使用yolo以及ssd等网络进行目标检测,以提高速度以及精度)

2. 估计模型

当检测与目标相关联时,检测到的边界框用于更新目标状态,其中速度分量通过卡尔曼滤波框架最优地求解;

如果target没有跟detection相连,就用线性速度模型对taeget进行预测;(线性速度模型的预测错误率较高)

3. 数据组合

在将detection分配给现有track时,通过预测其在当前帧中的新位置来估计每个目标

使用每个detection和所有预测的bonding box的IOU距离来计算assignment cost matrix;

小于IOU阈值的assignment 会被拒绝,源码中阈值设置为0.3;

文章指出使用IOU distance 可以解决 tracking 中的短暂遮挡问题,这是由于IOU distance更倾向于检测相交尺寸,在图片有部分遮挡的情况下,IOU变化不是很大,但遮挡面积很大时,必然有影响。如果遮挡时间较长会重新分配track,造成出错。࿰

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值