基础知识:
1、数域k上的多项式f,g的首项系数为一的最大公因式记作d=(f,g)
2、f,g首项系数为一,f|g且g|f,则f=g
证:
求(f,g),f=g·h+r
r=0时,(f,g)=g
r!=0时,设d=(f,g),d1=(g,r)
f=d·h1,g=d·h2
g=d1·h3,r=d1·h4
推出f=(d1·h3)·h+(d1·h4)
于是有d1|f,d1|g,d1|d
r=f-g·h,推出d|r
又因为d|g,于是有d|d1
由d1|d ,d|d1
推出d=d1,(f,g)=(g,r)
综上所述
r=0时,(f,g)=g
r!=0时,(f,g)=(g,r)