辗转相除法原理证明

基础知识:
1、数域k上的多项式f,g的首项系数为一的最大公因式记作d=(f,g)
2、f,g首项系数为一,f|g且g|f,则f=g

证:
求(f,g),f=g·h+r
r=0时,(f,g)=g
r!=0时,设d=(f,g),d1=(g,r)
f=d·h1,g=d·h2
g=d1·h3,r=d1·h4
推出f=(d1·h3)·h+(d1·h4)
于是有d1|f,d1|g,d1|d
r=f-g·h,推出d|r
又因为d|g,于是有d|d1
由d1|d ,d|d1
推出d=d1,(f,g)=(g,r)

综上所述
r=0时,(f,g)=g
r!=0时,(f,g)=(g,r)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值