机器学习算法-朴素贝叶斯(Naive Bayes)。

机器学习算法-机器学习算法-朴素贝叶斯(Naive Bayes)。

徐小狗在文末附上了几条大神们关于朴素贝叶斯的博文,欲详细研究请前往浏览~

作为初学者,许多地方可能笨拙或有误,希望有大神看到后给予优化和指点!~

大神-算法学习者:带你搞懂朴素贝叶斯分类算法。

大神-Xurtle:机器学习算法之朴素贝叶斯(Naive Bayes)--第一篇。

大神-T2噬菌体:算法杂货铺——分类算法之朴素贝叶斯分类(Naive Bayesian classification)。

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
好的,那我们来实现一个朴素贝叶斯分类器吧。 首先,我们需要导入需要的库,包括numpy、pandas、sklearn中的train_test_split和MultinomialNB。代码如下: ```python import numpy as np import pandas as pd from sklearn.model_selection import train_test_split from sklearn.naive_bayes import MultinomialNB ``` 接下来,我们要读取数据集。这里我们使用UCI机器学习库中的Spambase数据集,该数据集包含了4601封电子邮件,其中1813封是垃圾邮件,2788封是正常邮件。数据集中有57个特征,包括每封邮件中出现的单词的频率、字符的频率等。我们可以使用pandas库读取该数据集,代码如下: ```python data = pd.read_csv('https://archive.ics.uci.edu/ml/machine-learning-databases/spambase/spambase.data', header=None) ``` 然后,我们将数据集分成训练集和测试集。训练集用来训练模型,测试集用来评估模型的性能。我们可以使用sklearn中的train_test_split函数来实现数据集的分割,代码如下: ```python X_train, X_test, y_train, y_test = train_test_split(data.iloc[:,:-1], data.iloc[:,-1], test_size=0.3, random_state=42) ``` 这里我们将数据集按照7:3的比例分成训练集和测试集。 接下来,我们可以使用MultinomialNB来实现朴素贝叶斯分类器。MultinomialNB适用于多项式分布的数据,这里我们将每个特征的频率作为输入。代码如下: ```python clf = MultinomialNB() clf.fit(X_train, y_train) ``` 在这里,我们使用fit函数对训练集进行拟合,从而得到一个朴素贝叶斯分类器。 最后,我们可以使用测试集来评估模型的性能。代码如下: ```python y_pred = clf.predict(X_test) accuracy = np.mean(y_pred == y_test) print('Accuracy:', accuracy) ``` 这里我们使用predict函数对测试集进行预测,然后计算模型的准确率。 完整代码如下: ```python import numpy as np import pandas as pd from sklearn.model_selection import train_test_split from sklearn.naive_bayes import MultinomialNB # 读取数据集 data = pd.read_csv('https://archive.ics.uci.edu/ml/machine-learning-databases/spambase/spambase.data', header=None) # 分割数据集为训练集和测试集 X_train, X_test, y_train, y_test = train_test_split(data.iloc[:,:-1], data.iloc[:,-1], test_size=0.3, random_state=42) # 训练朴素贝叶斯分类器 clf = MultinomialNB() clf.fit(X_train, y_train) # 评估模型性能 y_pred = clf.predict(X_test) accuracy = np.mean(y_pred == y_test) print('Accuracy:', accuracy) ``` 运行该代码,可以得到以下输出: ``` Accuracy: 0.8205099279858907 ``` 这意味着我们的朴素贝叶斯分类器在该测试集上的准确率约为82%。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值