组合数:快速幂+lucas定理+费马小定理

题目

题三

此题需要注意数的范围超级大!

这题需要用到Lucas定理

Lucas定理

O(plogNlogp)

C a b m o d p = C a m o d p b m o d p ∗ C a / p b / p m o d p C_a^b \quad mod\quad p= C_{amodp}^{bmodp}*C_{a/p}^{b/p}\quad mod\quad p Cabmodp=CamodpbmodpCa/pb/pmodp

这就是Lucas定理
证明:
令(将a、b转换为p进制数):
a = a k p k + a k − 1 p k − 1 + . . . + a 0 p 0 ( 1 ) a=a_kp^k+a_{k-1}p^{k-1}+...+a_0p^0\qquad(1) a=akpk+ak1pk1+...+a0p0(1)
b = b k p k + b k − 1 p k − 1 + . . . + b 0 p 0 ( 2 ) b=b_kp^k+b_{k-1}p^{k-1}+...+b_0p^0\qquad(2) b=bkpk+bk1pk1+...+b0p0(2)
又因为二项式展开定理:
( 1 + x ) p = C p 0 + x C p 1 + x 2 C p 2 + . . . + x p C p p ( 3 ) (1+x)^p=C_p^0+xC_p^1+x^2C_p^2+...+x^pC_p^p\qquad(3) (1+x)p=Cp0+xCp1+x2Cp2+...+xpCpp(3)
由于p是质数,所以p中是不包含小于p的质因子的,所以当上式对p取模后,右式除第一项和最后一项外将被全部消掉!
那么我们就能得到这样一个等式:
( 1 + x ) p k m o d p k = 1 + x p k (1+x)^p{^k}\quad mod\quad p^k = 1+x^p{^k} (1+x)pkmodpk=1+xpk

对于(1)、(2)和(3)可化下式:

( 1 + x ) a m o d p = ( 1 + x ) a ∗ ( ( 1 + x ) p 1 ) a 1 ∗ ( ( 1 + x ) p 2 ) a 2 ∗ . . . ∗ ( ( 1 + x ) p k ) a k m o d p = ( 1 + x ) a 0 ∗ ( 1 + x p ) a 1 ∗ ( 1 + x p 2 ) a 2 ∗ . . . ∗ ( 1 + x p k ) a k ( 4 ) (1+x)^a\quad mod\quad p = (1+x)^a*((1+x)^{p^1})^{a_1}*((1+x)^{p^2})^{a_2}*...*((1+x)^{p^k})^{a_k}\quad mod\quad p\\=(1+x)^{a_0}*(1+x^p)^{a_1}*(1+x^{p^2})^{a_2}*...*(1+x^{p^k})^{a_k}\quad (4) (1+x)amodp=(1+x)a((1+x)p1)a1((1+x)p2)a2...((1+x)pk)akmodp=(1+x)a0(1+xp)a1(1+xp2)a2...(1+xpk)ak(4)

那么我们从 a a a ( 1 + x ) (1+x) (1+x)中选出 b b b个&x&来,那我们 x b x^b xb的系数就为 C a b C_a^b Cab,又因为(2)(4)可知:
x b = x b k p k + b k − 1 p k − 1 + . . . + b 0 p 0 x^b = x^{b_kp^k+b_{k-1}p^{k-1}+...+b_0p^0} xb=xbkpk+bk1pk1+...+b0p0
那么:
x b k p k 是 ( 1 + x p k ) a k 中的 C a k b k ∗ x b k p k x^{{b_k}p^k}是(1+x^{p^k})^{a_k}中的C_{a_k}^{b_k}*x^{{b_k}{p^k}} xbkpk(1+xpk)ak中的Cakbkxbkpk

C a b m o d p = C a k b k C a k − 1 b k − 1 . . . C a 1 b 1 C a 0 b 0 C_a^b\quad mod\quad p =C_{a_k}^{b_k}C_{a_k-1}^{b_k-1}...C_{a_1}^{b_1}C_{a_0}^{b_0} Cabmodp=CakbkCak1bk1...Ca1b1Ca0b0

这里我们写的详细一些:
我们已经将 a 、 b a、b ab转换为了 p p p进制,那么 a m o d p a\quad mod\quad p amodp的结果就是余数,表现出来就是 a 0 a_0 a0,同理 b m o d p = b 0 b\quad mod\quad p = b_0 bmodp=b0,再说的简单一点,我们将 a 、 b a、b ab p 、 p 2 、 p 3 、 . . . . 、 p k p、p^2、p^3、....、p^k pp2p3....pk迭代取模,这些数的乘积就是 C a k b k C a k − 1 b k − 1 . . . C a 1 b 1 C a 0 b 0 C_{a_k}^{b_k}C_{a_k-1}^{b_k-1}...C_{a_1}^{b_1}C_{a_0}^{b_0} CakbkCak1bk1...Ca1b1Ca0b0,其实就是Lucas定理不断递归下去得到的最终结果。

手写证明:
手写证明

最终代码,在这里感谢伍老师在lucas定理证明上给予的帮助

#include <iostream>
using LL = long long;
const int N = 30;
int fact[N], infact[N];
int n;

int qmi(int a,int b,int c)
{
	int res = 1;
	while(b)
	{
		if (b & 1) res = (LL)res * a % c;
		a = (LL)a * a % c;
		b >>= 1;
	}
	return res;
}

int C(int a,int b,int c)	//计算组合数
{
	if (b > a) return 0;
	int res = 1;
	for(int i = 1,j = a;i<=b;i++,j--)	//模拟阶乘
	{
		res = (LL)res * j % c;
		res = (LL)res * qmi(i, c - 2, c) % c;	//使用逆元思想和费马小定理来简化计算
	}
	return res;
}

int lucas(LL a,LL b,int c)
{
	if (a < c && b < c) return C(a, b,c);
	return (LL)C(a % c, b % c, c) * lucas(a / c, b / c, c) % c;	//递归过程,如之前的证明,我们只需要将每一次的余数用来求C,然后累积即可
}

int main()
{
	std::cin >> n;
	while(n--)
	{
		LL a, b;
		int c;
		std::cin >> a >> b >> c;
		std::cout << lucas(a, b, c) << std::endl;
	}
}
  • 2
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 1
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值