LeetCode:1293. Shortest Path in a Grid with Obstacles Elimination - Python

151 篇文章 2 订阅
1293. 网格中的最短路径

问题描述:

给你一个 m * n 的网格,其中每个单元格不是0(空)就是1(障碍物)。每一步,您都可以在空白单元格中移动。
如果您 最多 可以消除k个障碍物,请找出从左上角 (0, 0)右下角 (m-1, n-1)最短路径,并返回通过该路径所需的步数。如果找不到这样的路径,则返回 -1。

示例 1:

输入:
grid = [[0,0,0], [1,1,0], [0,0,0], [0,1,1], [0,0,0]],
k = 1
输出:6
解释:不消除任何障碍的最短路径是 10。消除位置 (3,2) 处的障碍后,最短路径是 6 。该路径是 (0,0) -> (0,1) -> (0,2) -> (1,2) -> (2,2) -> (3,2) -> (4,2).

提示:

  • grid.length == m
  • grid[0].length == n
  • 1 <= m, n <= 40
  • 1 <= k <= m*n
  • grid[i][j] == 0 or 1
  • grid[0][0] == grid[m-1][n-1] == 0

问题分析:

看问题不难发现,这个就是迷宫问题的变种,应该是早期Google的一个面试题。题目也给了提示广度优先搜索🔍

注意的两个点:

  • 要求的是最短距离
  • 拆墙不能超过k堵

现在看下解题思路,广度优先搜索,具体思路如下:
(1)和求解迷宫最短路径问题一样,一层一层的搜索,每一层使用队列(也就栈)来保存。
(2)但是,和迷宫问题不同的是,在每一层搜索的时候要考虑拆墙问题,所以可以引入一个“标志位 : k_”,作为从这个方格(点)出发还可以拆几堵墙,当然最开始是k堵墙了。
(3)下面,可以结合下图进行理解,一层一层的搜索入队:

  • 1、当,当前方格内没有墙,且之前没有访问过,则入队,否则舍弃。
  • 2、当,当前方格有墙,且还可以拆墙,且没有访问过,则入队,否则舍弃。
  • 3、判断是否访问过的条件包含两个:一是当前方格的位置信息,而是当前方格出发还可以拆多少堵墙的信息,也就是标志位信息 : k_

(4)最后,找到出口,则返回步数即可。
在这里插入图片描述

Python3实现:

class Solution:
    def shortestPath(self, grid, k):
        """
        :type grid: List[List[int]]
        :type k: int
        :rtype: int
        """
        queue = []
        step = 0
        n, m = len(grid), len(grid[0])

        if n == m and n == 1:
            return 0

        visited = set()
        queue.append((0, 0, k))
        visited.add((0, 0, k))

        # 如果 k 大于矩阵的从左上角到右下角的最小距离,那就直接返回最近距离即可
        if k > (len(grid) - 1 + len(grid[0]) - 1):
            return len(grid) - 1 + len(grid[0]) - 1

        directions = [(1, 0), (-1, 0), (0, 1), (0, -1)]  # 可走的四个方向
        while queue:
            curqueue = []  # 当前正在构建的新队列
            step += 1
            for x, y, k_ in queue:
                for dx, dy in directions:
                    nx, ny = x + dx, y + dy
                    if (nx, ny) == (n - 1, m - 1):  # 找到出口
                        return step
                    if 0 <= nx < n and 0 <= ny < m:  # 判断是不是越界

                        if grid[nx][ny] == 0 and (nx, ny, k_) not in visited:  # 不是墙,且之前没有访问过,添加
                            visited.add((nx, ny, k_))
                            curqueue.append((nx, ny, k_))

                        elif grid[nx][ny] == 1 and k_ > 0 and (nx, ny, k_ - 1) not in visited:  # 是墙但是,还可以拆墙并且之前没有访问过 添加
                            visited.add((nx, ny, k_ - 1))
                            curqueue.append((nx, ny, k_ - 1))
            queue = curqueue[:]  # 更新队列
        return -1


if __name__ == '__main__':
    solu = Solution()
    grid = [
        [0, 0, 0],
        [1, 1, 0],
        [0, 0, 0],
        [0, 1, 1],
        [0, 0, 0]]
    k = 1
    print(solu.shortestPath(grid, k))

声明: 总结学习,有问题或不当之处,可以批评指正哦,谢谢。

题目链接: https://leetcode-cn.com/problems/shortest-path-in-a-grid-with-obstacles-elimination/
参考链接: https://leetcode.com/problems/shortest-path-in-a-grid-with-obstacles-elimination/discuss/457493/python-stack-breadth-first-search

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值