练习8-步长与填充与多输入输出与池化层(总结李沐代码与部分理解)

本文介绍了卷积神经网络中步长和填充如何调整特征图尺寸,以优化计算效率。还探讨了多通道卷积和池化层的作用,以及它们在提升模型性能中的关键作用。
摘要由CSDN通过智能技术生成

步长与填充

步长:卷积核移动时的长度.
填充:对输入层的长度宽度的扩展。

目的:控制特征图的尺寸

较大的特征图需要更多的计算资源来处理。通过减小特征图的尺寸,可以降低网络的计算复杂度,使得模型更快、更高效

#输入通道为1,输出通道为1 卷积核形状3x3 边缘填充1
conv2d=nn.Conv2d(1,1,kernel_size=3,padding=1)

#输入通道为1,输出通道为1 卷积核形状5x3 高度填充2 宽度填充1
conv2d2=nn.Conv2d(1,1,kernel_size=(5,3),padding=(2,1))

#输入通道为1,输出通道为1 卷积核形状3x3 边缘填充1 步幅为2
conv2d3 = nn.Conv2d(1, 1, kernel_size=3, padding=1, stride=2)

#输入通道为1,输出通道为1 卷积核形状3x5 高度填充0 宽度填充1 高度上步长为3 水平上步长为2
conv2d = nn.Conv2d(1, 1, kernel_size=(3, 5), padding=(0, 1), stride=(3, 4))

多输入多输出通道

通道:我更愿意从特征方面去理解,首先卷积操作相当于找出卷积核对应的特征,多个卷积核做多个卷积就相当于找出不同标准下的不同特征。 故多通道数输出的其实就是不同标准下的不同特征图。

# 6就是输出通道
nn.Conv2d(1, 6, kernel_size=5, padding=2)

池化层

目的:
增强平移不变性
提取特征,减少过拟合(重要原因)

注意:池化层并不会改变通道数

原因:
卷积神经网络的池化层_哔哩哔哩_bilibili

nn.AvgPool2d(kernel_size=2,stride=2),

每一种层的作用:

卷积层:捕捉特征

池化层:减少计算量

全连接层:分类
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值