kaggle叶子分类比赛(易理解)

说实话网上很多关于叶子分类比赛的代码能取得的成绩都很好,但对于我这个业余人员太专业了,而且很多文章都有自己的想法,这让我这个仿写沐神代码的小菜鸡甚是头痛。
但好在我还是完成了,虽然结果并不是很好,但是如果跟着沐神走的同学在学习上应该没什么大问题。于是这篇文章的重点不是调参获得一个好成绩,而是把牵扯到的难点与思路好好的解释一下,方便同学们模仿。

竞赛地址:https://www.kaggle.com/c/classify-leaves

第一部分 加载并读取数据

难点:如何接受并处理图像数据–使用自定义函数进行处理

import os
import pandas as pd
import torch
from torch.utils.data import Dataset, DataLoader
from torchvision import transforms
from PIL import Image

class CustomDataset(Dataset):
    def __init__(self, csv_file, root_dir, transform=None):
        """
        初始化数据集。
        Args:
        csv_file (str): 数据集的csv文件路径,其中包含图像的文件名和标签。
        root_dir (str): 图像文件的根目录路径。
        transform (callable, optional): 一个可选的转换函数,用来对图像进行处理。
        """
        # 读取csv文件,并将数据存储到pandas DataFrame中。
        self.data_frame = pd.read_csv(csv_file)
        # 存储图像文件的根目录路径。
        self.root_dir = root_dir
        # 存储可选的图像转换函数。
        self.transform = transform

        # 将字符串类型的标签转换为整数索引,同时获取标签到整数索引的映射。
        self.data_frame['label'], self.label_mapping = pd.factorize(self.data_frame['label'])

    def __len__(self):
        """
        返回数据集中的样本数。
        """
        return len(self.data_frame)

    def __getitem__(self, idx):
        """
        根据给定的索引idx获取对应的数据项。
        Args:
        idx (int): 数据项的索引。
        
        Returns:
        tuple: 包含图像和其对应标签的元组。
        """
        # 如果idx是torch tensor类型,先转换为列表。
        if torch.is_tensor(idx):
            idx = idx.tolist()

        # 构建图像文件的完整路径。
        img_name = os.path.join(self.root_dir, self.data_frame.iloc[idx, 0])
        # 打开图像文件。
        image = Image.open(img_name)

        # 获取对应的标签(整数索引)。
        label = self.data_frame.iloc[idx, 1]

        # 如果有转换函数,应用之。
        if self.transform:
            image = self.transform(image)

        # 返回图像和标签。
        return image, label
    
    def get_num_classes(self):
        """
        返回数据集中不同类别的总数。
        """
        return len(self.label_mapping)



transform = transforms.Compose([
    transforms.Resize(256),
    transforms.RandomRotation(20),
    transforms.RandomHorizontalFlip(),
    transforms.CenterCrop(224),
    transforms.ColorJitter(brightness=0.5, contrast=0.5, saturation=0.5),
    transforms.ToTensor(),
    transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])
])

# 创建图像数据集实例
dataset = CustomDataset(csv_file='C:/Users/xiaox/pytorch/SucTest/train.csv',
                        root_dir='C:/Users/xiaox/pytorch/SucTest',
                        transform=transform)

num_classes = dataset.get_num_classes()
print(f"Total number of classes: {num_classes}")

# 数据加载和划分
from torch.utils.data import DataLoader, random_split
total_size = len(dataset)
train_size = int(total_size * 0.8)
test_size = total_size - train_size
train_dataset, test_dataset = random_split(dataset, [train_size, test_size])

# 加载数据集
train_loader = DataLoader(train_dataset, batch_size=128, shuffle=True)
test_loader = DataLoader(test_dataset, batch_size=128, shuffle=True)
1.如何自定义Dataset以用来灵活处理图像数据[数据的变化]
    1.定义__init__函数(读取csv文件,图像文件,transform,标签编码) [相当于将csv文件读取到Dataframe数据类型中,将标签映射为整数] 
    2.定义__getitem__函数(获取图像并转换,与图像对应的标签的索引)[相当于返回一张被转换的图片 与图片对应的Label对应的整数索引]

2.为什么使用类别索引将字符串映射成整数
    最重要的一点:神经网络中字符串无法转化为tensor类型,无法加入到net网络中

3.为什么选择类别索引而不是独热编码[独热编码就是预测房价中对于各个字符串标签的处理方法]
    独热编码在交叉熵损失函数中不适用

可拓展内容:
1.正常加载图像数据的其他方式(dataset,compose,data_loader的关系)
2.类别索引在做什么
3.train_iter迭代器在迭代时__getitem_在干什么

第二部分 定义网络

使用了Resnet50

from torch import nn
from d2l import torch as d2l
from torch.nn import functional as F
import torchvision.models as models


model = models.resnet50(weights=None)  # 使用预训练的ResNet-50


# 首先获取全连接层的输入特征数量
num_ftrs = model.fc.in_features

# 使用Dropout层和新的全连接层创建一个新的Sequential模块
model.fc = nn.Sequential(
    nn.Dropout(0.5),
    nn.Linear(num_ftrs, 176)
)

第三部分 损失函数,验证函数,优化器

这里我使用了Adam作为优化器

#这是评估模型平均准确率的函数
def evaluate_accuracy_gpu(net, data_iter, device=None): #@save
    """使用GPU计算模型在数据集上的精度"""
    if isinstance(net, nn.Module):
        #1
        net.eval()  # 设置为评估模式
        #2
        if not device:
            device = next(iter(net.parameters())).device
    # 正确预测的数量,总预测的数量
    #3
    metric = d2l.Accumulator(2)
    #4
    ## 4.1
    with torch.no_grad():
        ## 4.2
        for X, y in data_iter:
            ### 4.2.1
            if isinstance(X, list):
                # BERT微调所需的(之后将介绍)
                X = [x.to(device) for x in X]
            else:
                X = X.to(device)
            ### 4.2.2
            y = y.to(device)
            ### 4.2.3 注意:d2l原有库可能表示:acc = d2l.accuracy(net(X), y) metric.add(acc * y.numel(), y.numel())
            print(d2l.accuracy(net(X), y))
            metric.add(d2l.accuracy(net(X), y), y.numel())
             
    #5
    return metric[0] / metric[1]

#@save
def train_ch6(net, train_iter, test_iter, num_epochs, lr, device,weight_decay):
    """用GPU训练模型(在第六章定义)"""
    #1
    def init_weights(m):
        if type(m) == nn.Linear or type(m) == nn.Conv2d:
            nn.init.xavier_uniform_(m.weight)
    net.apply(init_weights)
    print('training on', device)
    #2
    net.to(device)
    #更改了优化器
    #optimizer = torch.optim.SGD(net.parameters(), lr=lr)
    optimizer = torch.optim.Adam(net.parameters(), lr=lr, weight_decay=weight_decay)
    #4
    loss = nn.CrossEntropyLoss()
    #5
    animator = d2l.Animator(xlabel='epoch', xlim=[1, num_epochs],
                            legend=['train loss', 'train acc', 'test acc'])
    #6
    timer, num_batches = d2l.Timer(), len(train_iter)
    #7
    for epoch in range(num_epochs):
        # 训练损失之和,训练准确率之和,样本数
        #7.1
        metric = d2l.Accumulator(3)
        #7.2
        net.train()
        #7.3
        for i, (X, y) in enumerate(train_iter):
            timer.start()
            optimizer.zero_grad()
            X, y = X.to(device), y.to(device)
            y_hat = net(X)
            l = loss(y_hat, y)
            l.backward()
            optimizer.step()
            with torch.no_grad():
                #7.4
                metric.add(l * X.shape[0], d2l.accuracy(y_hat, y), X.shape[0])
            timer.stop()
            #7.5
            train_l = metric[0] / metric[2]
            train_acc = metric[1] / metric[2]
            #7.6
            if (i + 1) % (num_batches // 5) == 0 or i == num_batches - 1:
                animator.add(epoch + (i + 1) / num_batches,
                             (train_l, train_acc, None))
        test_acc = evaluate_accuracy_gpu(net, test_iter)
        animator.add(epoch + 1, (None, None, test_acc))
    print(f'loss {train_l:.3f}, train acc {train_acc:.3f}, '
          f'test acc {test_acc:.3f}')
    print(f'{metric[2] * num_epochs / timer.sum():.1f} examples/sec '
          f'on {str(device)}')

第四部分 训练

## 开始训练
lr = 1e-4
batch_size = 128
num_epochs = 20
weight_decay = 1e-3

train_ch6(model, train_loader, test_loader, num_epochs, lr, d2l.try_gpu(),weight_decay)

可能出现的bug

在这里插入图片描述

CUDA错误
1.检查数据类型与形状是否合理(断言测试)
2.检查网络输出种类是否正常(获取类别个数)
3.检查网络是否正常(前向输出测试)
4.检查网络每一层是否正常(循环测试)

首先:可以尝试重启,有可能是把内存用完了,重启试一下在进行下面的排查

拓展内容

正常加载图像数据的其他方式


#### 当图片所在文件夹代表一个标签时使用或数据集有对应的加载函数
import torch 
from torchvision import transforms,datasets
from torch import nn
from d2l import torch as d2l

# 0.定义载入图像的格式 AlexNet的输入是227
transform = transforms.Compose([
    transforms.Resize(256),                    # 将图像缩放,使最短边为256像素
    transforms.CenterCrop(227),                # 从图像中心裁剪224x224大小的图像
    transforms.ToTensor(),                     # 将图像转换为PyTorch张量
    transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])  # 归一化处理
])

# 例子:读取图像数据(图片所在文件夹代表一个标签)
dataset = datasets.ImageFolder(root='C:\\Users\\xiaox\\pytorch\\SucTest\\img\\', transform=transform)

# 例子:加载 CIFAR-10 数据集(数据集有对应的加载函数)
train_set = datasets.CIFAR10(root='./data', train=True, download=True, transform=transform)

# 2.定义迭代器
train_loader = torch.utils.data.DataLoader(train_set, batch_size=64, shuffle=True)

类别索引在做什么

## 标签编码定义
在处理分类问题时,尤其是在使用机器学习或深度学习模型时,通常需要将文本或字符串类型的标签(labels)转换成整数索引。这是因为大多数算法都优化以处理数值数据,而不是文本数据。在你的代码中,这个转换是通过 Pandas 的 `factorize` 函数实现的。

### `pd.factorize()`
这个函数用于将一个具有重复值的数组转换为一个整数数组,其中每个唯一值都被分配一个整数标识符。它还返回一个包含原始数据中唯一值的数组,这可以作为标签到整数的映射。

#### 示例解释

假设你有一个CSV文件,其中包含如下的数据,其中每行代表一个样本,第一列是图像的文件名,第二列是图像的标签(如动物种类):

```
image_name, label
cat001.jpg, cat
dog001.jpg, dog
cat002.jpg, cat
bird001.jpg, bird
```

使用 `pd.factorize()` 函数处理 `label` 列时,会发生以下操作:


labels, label_mapping = pd.factorize(['cat', 'dog', 'cat', 'bird'])
```

结果:
- `labels` 会是 `[0, 1, 0, 2]`。这里,'cat' 被映射为 0,'dog' 被映射为 1,'bird' 被映射为 2。注意,第一个出现的标签('cat')是第一个被赋予新索引的。
- `label_mapping` 会是 `['cat', 'dog', 'bird']`,这是一个数组,其中索引位置对应于在 `labels` 中分配给每个唯一标签的整数。

通过这种方式,原始的字符串标签被转换为整数,使得它们可以更容易地被模型处理,同时你还保持了一个从整数索引回到原始标签的映射,这在模型预测结束后,将预测的整数标签转换回人类可读的标签时非常有用。

train_iter迭代器在迭代时__getitem_在干什么

for X,y in train_iter:做了什么

DataLoader 创建一个迭代器。

每次迭代时,从数据集(通过 Dataset 对象)中请求下一批数据。
(既向dataset对象随即指定batch_size个索引,来获取数据)

数据集的 __getitem__ 方法按索引获取数据和标签,这通常是随机访问,支持数据的随机打乱和批处理。
(dataset通过idx与__getitem__获得指定的数据然后返回给dataloader直到所有的batch_size个数据都被返回)
  • 5
    点赞
  • 6
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
Kaggle是一个致力于数据科学竞赛和项目的平台,而座头鲸比赛Kaggle上举办的一个有关鲸类分类比赛。该比赛的目标是通过声音识别技术建立一个模型,能够准确地分类座头鲸的不同种类。 座头鲸是广大海洋中的哺乳动物,由于其庞大的体型和独特的外貌,一直受到科学家们的关注。利用声音识别技术,我们可以通过座头鲸发出的声音来辨别它们的种类,这对于海洋生态研究及保护是非常重要的。因此,该比赛的意义在于提高座头鲸种类识别的准确性,帮助科学家们更好地了解和保护这一物种。 参与这场比赛的选手需要使用训练数据集中的声音样本来构建自己的模型,并利用该模型对测试集中的声音样本进行分类预测。比赛评判结果主要依据预测准确性,即被正确分类的样本占总样本数的比例。 为了提高准确性,选手可以通过多种方式处理数据,例如特征提取、降噪和模型优化等。同时,参赛选手可以在比赛期间讨论和分享彼此的想法、方法和经验,以便形成一个更好的解决方案。 除了竞赛本身,座头鲸比赛还为参赛者提供了学习和交流的机会。参赛者可以与世界各地的数据科学家和相关领域的专业人士交流经验、交流观点和分享最佳实践。 总之,Kaggle座头鲸比赛是一个挑战性的数据科学竞赛,为参赛者提供了构建座头鲸声音识别模型和学习交流的平台。通过参与该比赛,可以加深对座头鲸分类理解,进一步推动相关科学研究的发展,并为座头鲸保护工作做出贡献。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值