本文记录学习哈希表时的笔记
散列表用的是数组支持按照下标随机访问数据的特性,所以散列表其实就是数组的一种扩展,由数组演化而来。可以说,如果没有数组,就没有散列表
散列函数设计的基本要求:
- 散列函数计算得到的散列值是一个非负整数
- 如果key1 = key2,那hash(key1) == hash(key2)
- 如果key1 ≠ key2,那hash(key1) ≠ hash(key2)
第三点看起来合情合理,但是在真实的情况下,要想找到一个不同的key对应的散列值都不一样的散列函数,几乎是不可能的
即便像业界著名的MD5、SHA、CRC等哈希算法,也无法完全避免这种散列冲突。而且,因为数组的存储空间有限,也会加大散列冲突的概率
所以我们几乎无法找到一个完美的无冲突的散列函数,即便能找到,付出的时间成本、计算成本也是很大的,所以针对散列冲突问题,我们需要通过其他途径来解决
散列冲突
再好的散列函数也无法避免散列冲突。那究竟该如何解决散列冲突问题呢?我们常用的散列冲突解决方法有两类,开放寻址法(open addressing)和链表法(chaining)
开放寻执法
核心思想是,如果出现了散列冲突,我们就重新探测一个空闲位置,将其插入
那么如何重新探测呢?
线性探测(Linear Probing)
在散列表中插入元素:从出现哈希冲突的位置开始,依次往后查找,看是否有空闲位置,直到找到为止。遍历到尾部都没有找到空闲的位置,于是我们再从表头开始找
在散列表中查找元素:有点儿类似插入过程。我们通过散列函数求出要查找元素的键值对应的散列值,然后比较数组中下标为散列值的元素和要查找的元素。如果相等,则说明就是我们要找的元素;否则就顺序往后依次查找。如果遍历到数组中的空闲位置,还没有找到,就说明要查找的元素并没有在散列表中
在散列表中删除元素:对于使用线性探测法的散列表,删除操作稍有些特别,不能单纯地把要删除的元素设置为空。上面提到,使用线性探测法查找时,如果遇到一个空槽,我们会认为数据不存在。但是,如果这个空槽是由删除操作产生的,就会导致原来的查找算法失效,使得实际存在的数据被认为不存在
为了解决这个问题,可以将删除元素的位置特殊标记为deleted,起名为墓碑标记,来区分删除的槽和真正的空槽。当线性探测查找的时候,遇到标记为deleted的空间,并不是停下来,而是继续往下探测
总结:随着散列表插入数据越来越多,散列冲突发生的可能性就越大,空闲位置会越来越少,探测时间会越来越久。极端情况下,也有可能会线性探测整张散列表,才能找到要查找或者删除的数据,所以最坏情况下的时间复杂度为O(n)
二次探测
类比于线性探测
线性探测每次探测的步长为1,探测的下标序列就是
h
a
s
h
(
k
e
y
)
+
0
hash(key)+0
hash(key)+0,
h
a
s
h
(
k
e
y
)
+
1
hash(key)+1
hash(key)+1,
h
a
s
h
(
k
e
y
)
+
2
hash(key)+2
hash(key)+2……
二测探测每次探测的步长就变成了原来的“二次方”,探测的下标序列就是
h
a
s
h
(
k
e
y
)
+
0
2
hash(key)+0^2
hash(key)+02,
h
a
s
h
(
k
e
y
)
+
1
2
hash(key)+1^2
hash(key)+12,
h
a
s
h
(
k
e
y
)
+
2
2
hash(key)+2^2
hash(key)+22……
双重散列
不仅要使用一个散列函数。我们使用一组散列函数hash1(key),hash2(key),hash3(key)……我们先用第一个散列函数,如果计算得到的存储位置已经被占用,再用第二个散列函数,依次类推,直到找到空闲的存储位置
总结
不管采用哪种探测方法,当散列表中空闲位置不多的时候,散列冲突的概率就会大大提高。为了尽可能保证散列表的操作效率,一般情况下,我们会尽可能保证散列表中有一定比例的空闲槽位。我们用装载因子(load factor) 来表示空位的多少
公式: 散列表的装载因子 = 表中的元素个数 ÷ 表的长度 散列表的装载因子 = 表中的元素个数 ÷ 表的长度 散列表的装载因子=表中的元素个数÷表的长度
装载因子越大,说明空闲位置越少,冲突越多,散列表的性能会下降
拉链法
拉链法更加常用,散列表中,每个“桶(bucket)”或者“槽(slot)”会对应一条链表,所有散列值相同的元素我们都放到相同槽位对应的链表中
插入:通过散列函数计算出对应的散列槽位,将其插入到对应链表中即可,所以插入的时间复杂度是O(1)
查找、删除:通过散列函数计算出对应的槽,然后遍历链表查找或者删除,所以如果链表长度为k,这两个操作的时间复杂度就是O(k)
对于散列比较均匀的散列函数来说,理论上讲, k = n / m k = n / m k=n/m,其中n表示散列中数据的个数,m表示散列表中“槽”的个数
Word文档中单词拼写检查功能是如何实现的?
常用的英文单词有20万个左右,假设单词的平均长度是10个字母,平均一个单词占用10个字节的内存空间,那20万英文单词大约占2MB的存储空间,就算放大10倍也就是20MB。对于现在的计算机来说,这个大小完全可以放在内存里面。所以我们可以用散列表来存储整个英文单词词典
当用户输入某个英文单词时,我们拿用户输入的单词去散列表中查找。如果查到,则说明拼写正确;如果没有查到,则说明拼写可能有误,给予提示。借助散列表这种数据结构,我们就可以轻松实现快速判断是否存在拼写错误