一、XGBoost
1.1 XGBoost介绍
XGBoost是2016年由华盛顿大学陈天奇老师带领开发的一个可扩展机器学习系统。严格意义上讲XGBoost并不是一种模型,而是一个可供用户轻松解决分类、回归或排序问题的软件包。 它内部实现了梯度提升树(GBDT)模型,并对模型中的算法进行了诸多优化,在取得高精度的同时又保持了极快的速度,在一段时间内成为了国内外数据挖掘、机器学习领域中的大规模杀伤性武器。
更重要的是,XGBoost在系统优化和机器学习原理方面都进行了深入的考虑。毫不夸张的讲,XGBoost提供的可扩展性,可移植性与准确性推动了机器学习计算限制的上限,该系统在单台机器上运行速度比当时流行解决方案快十倍以上,甚至在分布式系统中可以处理十亿级的数据。
1.2 XGBoost优缺点
XGBoost的主要优点:
简单易用。相对其他机器学习库,用户可以轻松使用XGBoost并获得相当不错的效果。
高效可扩展。在处理大规模数据集时速度快效果好,对内存等硬件资源要求不高。
鲁棒性强。相对于深度学习模型不需要精细调参便能取得接近的效果。
XGBoost内部实现提升树模型,可以自动处理缺失值。
XGBoost的主要缺点:
相对于深度学习模型无法对时空位置建模,不能很好地捕获图像、语音、文本等高维数据。
在拥有海量训练数据,并能找到合适的深度学习模型时,深度学习的精度可以遥遥领先XGBoost。
1.3 XGBoost的应用
XGBoost在机器学习与数据挖掘领域有着极为广泛的应用。据统计在2015年Kaggle平台上29个获奖方案中,17只队伍使用了XGBoost;在2015年KDD-Cup中,前十名的队伍均使用了XGBoost,且集成其他模型比不上调节XGBoost的参数所带来的提升。这些实实在在的例子都表明,XGBoost在各种问题上都可以取得非常好的效果。
同时,XGBoost还被成功应用在工业界与学术界的各种问题中。例如商店销售额预测、高能物理事件分类、web文本分类;用户行为预测、运动检测、广告点击率预测、恶意软件分类、灾害风险预测、在线课程退学率预测。 虽然领域相关的数据分析和特性工程在这些解决方案中也发挥了重要作用,但学习者与实践者对XGBoost的一致选择表明了这一软件包的影响力与重要性。
1.4 XGBoost原理简介
XGBoost是基于CART树的集成模型,它的思想是串联多个决策树模型共同进行决策。
那么如何串联呢?XGBoost采用迭代预测误差的方法串联。举个通俗的例子,我们现在需要预测一辆车价值3000元。我们构建决策树1训练后预测为2600元,我们发现有400元的误差,那么决策树2的训练目标为400元,但决策树2的预测结果为350元,还存在50元的误差就交给第三棵树……以此类推,每一颗树用来估计之前所有树的误差,最后所有树预测结果的求和就是最终预测结果!
XGBoost的基模型是CART回归树,它有两个特点:(1)CART树,是一颗二叉树。(2)回归树,最后拟合结果是连续值。
XGBoost模型可以表示为以下形式,我们约定f t ( x ) f_t(x)f
t
(x)表示前t tt颗树的和,h t ( x ) h_t(x)h
t
(x)表示第t tt颗决策树,模型定义如下:
f t ( x ) = ∑ t = 1 T h t ( x ) f_{t}(x)=\sum_{t=1}^{T} h_{t}(x)f
t
(x)=∑
t=1
T
h
t
(x)
由于模型递归生成,第t tt步的模型由第t − 1 t-1t−1步的模型形成,可以写成:
f t ( x ) = f t − 1 ( x ) + h t ( x ) f_{t}(x)=f_{t-1}(x)+h_{t}(x)f
t
(x)=f
t−1
(x)+h
t
(x)
每次需要加上的树h t ( x ) h_t(x)h
t
(x)是之前树求和的误差:
r t , i = y i − f m − 1 ( x i ) r_{t, i}=y_{i}-f_{m-1}\left(x_{i}\right)r
t,i
=y
i
−f
m−1
(x
i
)
我们每一步只要拟合一颗输出为r t , i r_{t,i}r
t,i
的CART树加到f t − 1 ( x ) f_{t-1}(x)f
t−1
(x)就可以了。
1.5 XGBoost重要参数
1.eta[默认0.3]
通过为每一颗树增加权重,提高模型的鲁棒性。
典型值为0.01-0.2。
2.min_child_weight[默认1]
决定最小叶子节点样本权重和。
这个参数可以避免过拟合。当它的值较大时,可以避免模型学习到局部的特殊样本。
但是如果这个值过高,则会导致模型拟合不充分。
3.max_depth[默认6]
这个值也是用来避免过拟合的。max_depth越大,模型会学到更具体更局部的样本。
典型值:3-10
4.max_leaf_nodes
树上最大的节点或叶子的数量。
可以替代max_depth的作用。
这个参数的定义会导致忽略max_depth参数。
5.gamma[默认0]
在节点分裂时,只有分裂后损失函数的值下降了,才会分裂这个节点。Gamma指定了节点分裂所需的最小损失函数下降值。
这个参数的值越大,算法越保守。这个参数的值和损失函数息息相关。
6.max_delta_step[默认0]
这参数限制每棵树权重改变的最大步长。如果这个参数的值为0,那就意味着没有约束。如果它被赋予了某个正值,那么它会让这个算法更加保守。
但是当各类别的样本十分不平衡时,它对分类问题是很有帮助的。<