揭秘聚划算活动的营销技巧!!!

本文围绕卖家参加淘宝聚划算活动展开。先介绍店铺背景,定位年轻人运动套装。通过分析运动套装市场趋势、销售情况和搜索数据,得出3月上线活动较好。还阐述聚划算活动各阶段营销技巧,活动后也有稳定店铺的举措,强调商家要合理利用数据把握时机。

活动聚划算汇合了淘宝的优质流量,为了自己店铺的流量、人气和销售量,每个卖家都想要参加聚划算,但是由于聚划算的流量太大,如果没有提前准备好,面对聚划算的销售压力,很可能会承受不住。那卖家什么时候上聚划算呢?
一、店铺背景情况
目前店铺在售商品200多款,定位于年轻人的运动套装,服装特色定位为青春、活泼、色彩靓丽的休闲运动服,涉及到的分类有男士运动套装、女士运动套装、情侣运动套装、运动裤;从定位的角度来说:店铺定位比较广泛,针对淘宝最新规则——千人千面,这种店铺遍地开花式的宝贝布局未尝就一定是一件坏事。在这里插入图片描述
二、分析各项数据,巧取最佳活动时间

  1. 首先剖析运动服/休闲服装的整个市场,我们可以先来了解下整个运动套装市场的一个趋势:可以看出运动套装浏览量高峰在2月开始呈现明显上升趋势,而3月有一个小高峰,这对于我们店铺来说是一个莫大的契机。

  2. 那么我们再来看看运动套装这个子类目在整个运动服/休闲服装这个类目的销售情况:可以看出整个运动服/休闲服装全年的前三甲为运动套装、运动长裤、运动T恤,这三个子类目就占据了整个类目57%的销售额,所以对于本店的运动套装宝贝布局来说市场还是很可观的。

  3. 我们再从淘宝指数来了解2013全年的相关搜索数据,整个运动套装市场的搜索指数在3月是一个全方位爆发的顶点(除淘宝大型活动),全年49月基本是平稳的市场。在双11期间,整个市场的搜索的数据相当可观,这说明淘宝双11大型活动可以更好的吸引大量买家,更有力的促进了整个运动套装市场,但是到12月期间,由于是春节的缘故,市场也有了波动。

综上: 选择3月份活动上线是比较好的一个时段,既能带动店铺2015春款的基础销量同时为我们后期的夏款也能打下坚实基础。
在这里插入图片描述
三、聚划算活动营销技巧
活动时段浏览量与访客数走势图:

(1)蓄势期间:活动提前曝光——站内与站外联合推广;广积人气,提前发放优惠有抢购信息;倒计时活动时间突出店铺活动时间段;
(2)升温期:聚划算页面预热展示——配合活动时间的预热, 店铺首页更改为突出产品/便于消费者浏览查阅商品的页面;单品页面上——和首页风格一致的产品详情页,让用户视觉体验更统一,强化宝贝优势与活动力度。
(3)高潮期:直通车、钻展大规模商业流量引流, 配合聚划算活动引流页面,全面曝光。
(4)持续期:鼓励消费者口碑的再次传播,优化品牌力,促进销售,同时做快乐分享,维持DSR。
聚划算后我们还做了些稳定店铺性工作:
1、连续举办了一系列吸引新老客户的促销活动,如手机专享价等。
2、利用直通车继续辅助单品推广,使得聚划算单品排名比较靠前,可以自然引流。
3、由于聚划算销售的关联效果也不错,带出了几个小爆款,用推广工具辅助推广,也使得店铺宝贝能够遍地开花,不会担心店铺只有单一爆款的支撑局面;
4、一部分老客户的回头率较高,针对当天没有买到宝贝从而收藏店铺的顾客来进行回访,给予会员价优惠促成二次购买。
以上是卖家什么时候上聚划算的所有内容了,商家应该合理利用数据,把握好参加聚划算的时机。

希望这些能够帮到大家。如果大家想要了解更多推广营销方面的相关资讯,请关注神小阳公众号。

卷积神经网络(CNN)是针对多维网格数据(如图像、视频)设计的深度学习架构,其结构灵感来源于生物视觉系统对信息的分层处理机制。该模型通过局部连接、参数共享、层级特征提取等策略,有效捕获数据中的空间模式。以下从结构特性、工作机制及应用维度展开说明: **1. 局部连接卷积运算** 卷积层利用可学习的多维滤波器对输入进行扫描,每个滤波器仅作用于输入的一个有限邻域(称为感受野),通过线性加权非线性变换提取局部特征。这种设计使网络能够聚焦于相邻像素间的关联性,从而识别如边缘走向、色彩渐变等基础视觉模式。 **2. 参数共享机制** 同一卷积核在输入数据的整个空间范围内保持参数不变,大幅降低模型复杂度。这种设计赋予模型对平移变换的适应性:无论目标特征出现在图像的任何区域,均可由相同核函数检测,体现了特征位置无关性的建模思想。 **3. 特征降维空间鲁棒性** 池化层通过对局部区域进行聚合运算(如取最大值或均值)实现特征降维,在保留显著特征的同时提升模型对微小形变的容忍度。这种操作既减少了计算负荷,又增强了特征的几何不变性。 **4. 层级特征抽象体系** 深度CNN通过堆叠多个卷积-池化层构建特征提取金字塔。浅层网络捕获点线面等基础模式,中层网络组合形成纹理部件,深层网络则合成具有语义意义的对象轮廓。这种逐级递进的特征表达机制实现了从像素级信息到概念化表示的自动演进。 **5. 非线性扩展泛化控制** 通过激活函数(如ReLU及其变体)引入非线性变换,使网络能够拟合复杂决策曲面。为防止过拟合,常采用权重归一化、随机神经元失活等技术约束模型容量,提升在未知数据上的表现稳定性。 **6. 典型应用场景** - 视觉内容分类:对图像中的主体进行类别判定 - 实例定位识别:在复杂场景中标定特定目标的边界框及类别 - 像素级语义解析:对图像每个像素点进行语义标注 - 生物特征认证:基于面部特征的个体身份鉴别 - 医学图像判读:辅助病灶定位病理分析 - 结构化文本处理:循环神经网络结合处理序列标注任务 **7. 技术演进脉络** 早期理论雏形形成于1980年代,随着并行计算设备的发展大规模标注数据的出现,先后涌现出LeNet、AlexNet、VGG、ResNet等里程碑式架构。现代研究聚焦于注意力分配、跨层连接、卷积分解等方向,持续推动模型性能边界。 卷积神经网络通过其特有的空间特征提取范式,建立了从原始信号到高级语义表达的映射通路,已成为处理几何结构数据的标准框架,在工业界学术界均展现出重要价值。 资源来源于网络分享,仅用于学习交流使用,请勿用于商业,如有侵权请联系我删除!
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值