数据的合并、筛选、排序

这篇博客介绍了Python中数据处理的关键操作,包括数据的合并、筛选和排序。通过`concat()`和`merge()`函数展示了如何进行轴向连接和融合,详细解释了这两个函数的常用参数。接着,讨论了根据特定列值和多条件进行数据筛选的方法。最后,探讨了如何使用`sort_index()`和`sort_values()`对数据进行排序,提供了两种不同的排序策略。
摘要由CSDN通过智能技术生成

数据的合并

数据合并主要包括下面两种操作:

轴向连接(concatenation):pd.concat()可以沿一个轴将多个DataFrame对象连接在一起,形成一个新的DataFrame对象。

融合(merging):pd.merge()方法可以根据一个或多个键将不同DataFrame中的行连接起来。

concat()函数

concat()函数可以将数据根据不同的轴作进行合并。我们先看一下concat()的常用参数:

pd.concat(objs, axis=0, join='outer')
'''
objs: series、dataframe或者是panel构成的list。

axis: 需要合并链接的轴,0是行,1是列,默认是0。

join:连接的方式 inner,或者outer,默认是outer。
'''
import pandas as pd
dict1={
   
    'A': ['A0', 'A1', 'A2', 'A3'],
    'B': ['B0', 'B1', 'B2', 'B3'],
    'C': ['C0', 'C1', 'C2', 'C3']}
df1=pd.DataFrame(dict1)
print(df1)

dict2={
   
    'B': ['B0', 'B1', 'B2', 'B3'],
    'C': ['C0', 'C1', 'C2', 'C3'],
    'D': ['D0', 'D1', 'D2', 'D3']}
df2=pd.DataFrame(dict2)
print(df2)
    A   B   C
0  A0  B0  C0
1  A1  B1  C1
2  A2  B2  C2
3  A3  B3  C3
    B   C   D
0  B0  C0  D0
1  B1  C1  D1
2  B2  C2  D2
3  B3  C3  D3
# 使用concat()默认参数合并
pd.concat([df1,df2]
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值