最长公共上升子序列 LCIS

LCIS

今天做到了一道 LCIS 的裸题,便写了篇 blog 来记录一下。

给出两个长度分别为 n ,m的序列 A ,B,给出一个 O (n m )的做法。
Fj表示 B 序列处理到j的时候,与 A 序列构成最长公共上升子序列的最大长度,其中A序列从 1 枚举到n
先枚举 A 序列的位置i,再枚举 B 序列的位置j

在枚举的时候,如果出现了 Ai = Bj 的情况,那么就应在 1 j- 1 中,找一个最大的Fk( Bk < Ai )来更新 Fj Besides ,在枚举 j 的时候,顺便维护小于Ai Bj Fj 的最大值,这样更新 Fj 的时间复杂度就是 O (1)的,从而整个算法的复杂度就是 O (n m <script type="math/tex" id="MathJax-Element-2230">m</script>)的。

Code

#define fo(i,j,l) for(int i=j;i<=l;i++)

    fo(i,1,n)
    {
        int k=0;
        fo(j,1,m)
        if(a[i]==b[j])
        {
            if(f[k]+1>f[j])//如果a[i]=b[j],就在1到j-1之间,找一个b[k]小于b[j](a[i])的最大的f[k]来转移到f[j]
            f[j]=f[k]+1;
        }else
        if(a[i]>b[j])
        if(f[j]>f[k])k=j;//顺带维护1到j-1中,小于a[i]的b[k]的f[k]的最大值
    }   
    int k=0;
    fo(i,1,m)if(f[i]>f[k])k=i;

如果要记录方案,可以加一个链表来维护方案。

Code2.0

#define fo(i,j,l) for(int i=j;i<=l;i++)

    fo(i,1,n)
    {
        int k=0,y=0;
        fo(j,1,m)
        if(a[i]==b[j])
        {
            if(f[k]+1>f[j])
            f[j]=f[k]+1,z[j]=++o,ne[o]=y,lb[o]=j;
        }else
        if(a[i]>b[j])
        if(f[j]>f[k])k=j,y=z[k];
    }   
    int k=0;
    fo(i,1,m)if(f[i]>f[k])k=i;
    int r=0,a=z[k];
    printf("%d\n",f[k]);
    while(a)d[++r]=lb[a],a=ne[a];
    fd(i,r,1)printf("%d ",b[d[i]]);
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值