计算机视觉之图像分类算法-笔记

文章探讨了机器学习的核心步骤,包括数据收集、模型定义和训练,特别是针对CNN模型的优化策略。同时提出了大模型资源消耗与人脑效率的对比,数据集标注质量对模型效果的影响,以及Transformer模型的重要论文。在训练过程中,关注损失函数、学习率和可视化工具如Train_Custom_Dataset对于评估模型训练的有效性至关重要。
摘要由CSDN通过智能技术生成

让机器从数据中学习的步骤:收集数据、定义模型、训练(寻找最佳参数,达到最高正确率)、预测

课程讲解了CNN的几种重要的模型,以及降低模型参数量和计算量的方法(降低输入输出通道数、减小卷积核的尺寸)

问题收集:

1、为什么现在的大模型消耗这么多资源,人脑却这么节能,有什么可能的原因吗?

研究Ai的耗能问题是个很好的课题

2、数据集标注不清会使大模型效果比小模型效果差吗?

3、attention is all you need 这篇论文是transformer的开山之作,想详细了解transform,可以阅读这篇论文。

4、在模型训练过程可以观察什么,怎么知道是否在进行有效的训练?

观察训练集/测试集上的损失函数值,震荡情况,是否非常波动,学习率是否在逐渐降低。子豪兄在github上的一个开源库Train_Custom_Dataset,用原生pytorch实现图像分类,实时的可视化模型训练过程中的各种量。

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值