2021-06-16 节点电压为极坐标下的牛顿-拉夫逊法潮流计算学习

本文详细介绍了在极坐标下使用牛顿-拉夫逊法进行电力系统潮流计算的过程。通过节点功率表示、节点电压的幅值和相角表示,建立了有功和无功不平衡量方程式,并阐述了雅可比矩阵的构造方法。代码示例展示了在MATLAB环境中如何实现这一计算过程,包括迭代求解、修正量计算以及电压和相角的修正。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

以节点电压为极坐标下的牛顿-拉夫逊法潮流计算

节点电压用极坐标表示的牛顿-拉夫逊法的潮流计算

 当节点电压使用极坐标时,节点电压表示为:
极坐标下的节点电压表示
 节点功率方式表示为:
有功功率方程式
无功功率方程式
 上式将节点功率表示为节点电压的幅值和相角的函数。其中,相角差表示为两个节点电压的相角差:
在这里插入图片描述
 在节点电压用极坐标表示的电力系统中,假设存在n个节点的系统中,其中:
 第1个节点到第m个节点为PQ节点(其中,PQ节点为有功功率、无功功率已知,电压幅值、相角未知);
 第m+1个节点到第n-1个节点为PV节点(其中,有功功率、电压幅值已知,无功功率、电压相角未知。那么第m+1个节点到第n-1个节点的电压幅值是已知的);
 第n个节点为平衡节点(其中,电压幅值、相角已知,有功功率、无功功率未知。那么第n个节点的电压幅值和相角是已知的
因此,第1个节点到第n-1个节点的电压相角是未知的,第1个节点到第m个节点的电压幅值是未知的
 实际上,对于每一个PQ节点或者每一个PV节点都可以列些一个有功不平衡量方程式:
有功不平衡方程式
其中,i的取值范围为1,2,3,…,n-1
 对于每一个PQ节点还可以列些一个无功不平衡方程式:
无功不平衡方程式
其中,i的取值范围为1,2,3,…,m
 上式中一共包含n-1+m个方程式,正好同未知的电压幅值、相角的个数是相同的,相比节点电压用直角坐标系的方程式少了n-1-m个。
因此,修正方程式如下所示:
节点电压用极坐标下的修正方程
式中每个变量的具体表示为:
修正方程
矩阵分块表示
每个字母所表达的意义
 在这里把节点不平衡功率对节点电压幅值的偏导数都乘以该节点的电压,相应的把节点的修正量除以该节点的电压幅值。因此,雅可比矩阵就具有比较整齐的形式。
 在对有功不平衡方程和无功不平衡方程求偏导数,可以得到雅可比元素的表达式如下:
雅可比阵中的表示方法
 在使用计算机编程的过程中,计算步骤和程序框图如下所示:
计算流程
 基于matlab的极坐标下的牛顿拉夫逊法潮流计算(截取重要代码):

% 若迭代次数超过100,则跳出
for t = 1:100
    % 计算出PQ节点的不平衡量(初始化)
    % 计算节点个数
    n = nPV + nPQ + 1;
    dP = bus(1:n-1,4);
    dQ = bus(1:nPQ,5);
    % 利用for循环算出值
    % 算出有功的不平衡量以及无功不平衡量
    for i = 1:n-1
        for j = 1:n
            dP(i,1) = dP(i,1) - bus(i,2) * bus(j,2) * (real(initial_Y(i,j)) * cos(bus(i,3) - bus(j,3)) + (imag(initial_Y(i,j)) * sin(bus(i,3) - bus(j,3))));
            if i < nPQ + 1
                dQ(i,1) = dQ(i,1) - bus(i,2) * bus(j,2) * (real(initial_Y(i,j)) * sin(bus(i,3) - bus(j,3)) - (imag
评论 7
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值