本篇为本科课程《电力系统稳态分析》的笔记。
极坐标形式的牛顿-拉夫逊潮流算法
潮流方程式
一般选取平衡节点的电压相角为参考相角。
对于有n个节点的电力系统,设有一个平衡节点,m个PQ节点,n-m-1个PV节点。编号顺序为PQ节点、PV节点、平衡节点,即:
节点编号 | 种类 | 个数 |
---|---|---|
1 , 2 , ⋯ , m 1,2,\cdots,m 1,2,⋯,m | PQ节点 | m m m |
m + 1 , m + 2 , ⋯ , n − 1 m+1,m+2,\cdots,n-1 m+1,m+2,⋯,n−1 | PV节点 | n − m − 1 n-m-1 n−m−1 |
n n n | 平衡节点 | 1 1 1 |
- PQ节点的功率方程
Δ P i = P G i − P L i − U i ∑ j = 1 n U j ( G i j cos θ i j + B i j sin θ i j ) Δ Q i = Q G i − Q L i − U i ∑ j = 1 n U j ( G i j sin θ i j − B i j cos θ i j ) ( i = 1 , ⋯ , m ) \Delta P_{i}=P_{Gi}-P_{Li}-U_{i}\sum_{j=1}^{n}U_{j}\left(G_{ij}\cos\theta_{ij}+B_{ij}\sin\theta_{ij}\right)\\\\ \Delta Q_{i}=Q_{Gi}-Q_{Li}-U_{i}\sum_{j=1}^{n}U_{j}\left(G_{ij}\sin\theta_{ij}-B_{ij}\cos\theta_{ij}\right)\\\\ (i=1,\cdots,m) ΔPi=PGi−PLi−Uij=1∑nUj(Gijcosθij+Bijsinθij)ΔQi=QGi−QLi−Uij=1∑nUj(Gijsinθij−Bijcosθij)(i=1,⋯,m)
其中, P i ′ = P G i − P L i , Q i ′ = Q G i − Q L i P_{i}^{'}=P_{Gi}-P_{Li},Q_{i}^{'}=Q_{Gi}-Q_{Li} Pi′=PGi−PLi,Qi′=QGi−QLi是给定条件,而 U i , θ i U_i,\theta_i Ui,θi为待求量。 - PV节点的功率方程
Δ P i = P G i − P L i − U i ∑ j = 1 n U j ( G i j cos θ i j + B i j sin θ i j ) Δ Q i = Q G i − Q L i − U i ∑ j = 1 n U j ( G i j sin θ i j − B i j cos θ i j ) ( i = m + 1 , ⋯ , n − 1 ) \Delta P_{i}=P_{Gi}-P_{Li}-U_{i}\sum_{j=1}^{n}U_{j}\left(G_{ij}\cos\theta_{ij}+B_{ij}\sin\theta_{ij}\right)\\\\ \Delta Q_{i}=Q_{Gi}-Q_{Li}-U_{i}\sum_{j=1}^{n}U_{j}\left(G_{ij}\sin\theta_{ij}-B_{ij}\cos\theta_{ij}\right)\\\\ (i=m+1,\cdots,n-1) ΔPi=PGi−PLi−Uij=1∑nUj(Gijcosθij+Bijsinθij)ΔQi=QGi−QLi−Uij=1∑nUj(Gijsinθij−Bijcosθij)(i=m+1,⋯,n−1)
其中, P i ′ , U i P_{i}^{'},U_i Pi′,Ui是给定条件,而 Q i ′ , θ i Q_i^{'},\theta_i Qi′,θi为待求量。 - 平衡节点的功率方程
Δ P n = P G n − P L n − U n ∑ j = 1 n U j ( G n j cos θ n j + B n j sin θ n j ) Δ Q n = Q G n − Q L n − U n ∑ j = 1 n U j ( G n j sin θ n j − B n j cos θ n j ) \Delta P_{n}=P_{Gn}-P_{Ln}-U_{n}\sum_{j=1}^{n}U_{j}\left(G_{nj}\cos\theta_{nj}+B_{nj}\sin\theta_{nj}\right)\\\\ \Delta Q_{n}=Q_{Gn}-Q_{Ln}-U_{n}\sum_{j=1}^{n}U_{j}\left(G_{nj}\sin\theta_{nj}-B_{nj}\cos\theta_{nj}\right)\\\\ ΔPn=PGn−PLn−Unj=1∑nUj(Gnjcosθnj+Bnjsinθnj)ΔQn=QGn−QLn−Unj=1∑nUj(Gnjsinθnj−Bnjcosθnj)
其中, U n , θ n U_n,\theta_n Un,θn是给定条件,且 θ n = 0 \theta_n=0 θn=0,而 P n ′ , Q n ′ P_n^{'},Q_n^{'} Pn′,Qn′为待求量。
综合上面三类节点的功率方程,
Δ
P
i
\Delta P_{i}
ΔPi的方程在PQ节点和PV节点存在,
Δ
Q
i
\Delta Q_{i}
ΔQi的方程在PQ节点存在,则实际需要求解的方程组为:
Δ
P
i
=
P
G
i
−
P
L
i
−
U
i
∑
j
=
1
n
U
j
(
G
i
j
cos
θ
i
j
+
B
i
j
sin
θ
i
j
)
(
i
=
1
,
⋯
,
n
−
1
)
Δ
Q
i
=
Q
G
i
−
Q
L
i
−
U
i
∑
j
=
1
n
U
j
(
G
i
j
sin
θ
i
j
−
B
i
j
cos
θ
i
j
)
(
i
=
1
,
⋯
,
m
)
\Delta P_{i}=P_{Gi}-P_{Li}-U_{i}\sum_{j=1}^{n}U_{j}\left(G_{ij}\cos\theta_{ij}+B_{ij}\sin\theta_{ij}\right)\quad (i=1,\cdots,n-1)\\\\ \Delta Q_{i}=Q_{Gi}-Q_{Li}-U_{i}\sum_{j=1}^{n}U_{j}\left(G_{ij}\sin\theta_{ij}-B_{ij}\cos\theta_{ij}\right)\quad (i=1,\cdots,m)\\\\
ΔPi=PGi−PLi−Uij=1∑nUj(Gijcosθij+Bijsinθij)(i=1,⋯,n−1)ΔQi=QGi−QLi−Uij=1∑nUj(Gijsinθij−Bijcosθij)(i=1,⋯,m)
这里是一个n+m-1阶的适定非线性方程组,包括n-1个有功功率方程和m个无功功率方程。共计n+m-1个未知量,包括 θ 1 , θ 2 , ⋯ , θ n − 1 \theta_1,\theta_2,\cdots,\theta_{n-1} θ1,θ2,⋯,θn−1和 U 1 , U 2 , ⋯ , U n − 1 U_1,U_2,\cdots,U_{n-1} U1,U2,⋯,Un−1,而且待求相角个数等于有功功率方程的个数,待求电压值的个数等于无功功率方程的个数。
修正方程式及其求解
将电压相角和电压有效值写成向量形式。
θ
=
[
θ
1
,
θ
2
,
⋯
,
θ
n
−
1
]
T
U
=
[
U
1
,
U
2
,
⋯
,
U
m
]
T
\boldsymbol{\theta}=[\theta_1,\theta_2,\cdots,\theta_{n-1}]^{T}\\\\ \boldsymbol{U}=[U_1,U_2,\cdots,U_{m}]^{T}
θ=[θ1,θ2,⋯,θn−1]TU=[U1,U2,⋯,Um]T
所以变量可以写为:
x
=
[
θ
U
]
\boldsymbol{x}=\begin{bmatrix}\boldsymbol{\theta}\\\boldsymbol{U}\end{bmatrix}
x=[θU]
有功功率和无功功率误差的求法:
Δ
P
i
(
x
)
=
P
G
i
−
P
L
i
−
U
i
∑
j
=
1
n
U
j
(
G
i
j
cos
θ
i
j
+
B
i
j
sin
θ
i
j
)
=
P
i
′
−
P
i
(
x
)
Δ
Q
i
(
x
)
=
Q
G
i
−
Q
L
i
−
U
i
∑
j
=
1
n
U
j
(
G
i
j
sin
θ
i
j
−
B
i
j
cos
θ
i
j
)
=
Q
i
′
−
Q
i
(
x
)
\Delta P_i(\boldsymbol{x})=P_{Gi}-P_{Li}-U_{i}\sum_{j=1}^{n}U_{j}\left(G_{ij}\cos\theta_{ij}+B_{ij}\sin\theta_{ij}\right)=P_{i}^{'}-P_i(\boldsymbol{x})\\\\ \Delta Q_i(\boldsymbol{x})=Q_{Gi}-Q_{Li}-U_{i}\sum_{j=1}^{n}U_{j}\left(G_{ij}\sin\theta_{ij}-B_{ij}\cos\theta_{ij}\right)=Q_{i}^{'}-Q_i(\boldsymbol{x})
ΔPi(x)=PGi−PLi−Uij=1∑nUj(Gijcosθij+Bijsinθij)=Pi′−Pi(x)ΔQi(x)=QGi−QLi−Uij=1∑nUj(Gijsinθij−Bijcosθij)=Qi′−Qi(x)
然后写出修正方程,下面全部略去了表示迭代次数的上标k:
[
Δ
P
1
(
x
)
Δ
P
2
(
x
)
⋮
Δ
P
n
−
1
(
x
)
Δ
Q
1
(
x
)
Δ
Q
2
(
x
)
⋮
Δ
Q
m
(
x
)
]
=
[
H
11
H
12
⋯
H
1
,
m
−
1
N
11
N
12
⋯
N
1
,
m
H
21
H
22
⋯
H
2
,
m
−
1
N
21
N
22
⋯
N
2
,
m
⋮
⋮
⋮
⋯
⋮
⋮
⋮
⋯
H
n
−
1
,
1
H
n
−
1
,
2
⋯
H
n
−
1
,
m
−
1
N
n
−
1
,
1
N
n
−
1
,
2
⋯
N
n
−
1
,
m
M
11
M
12
⋯
M
1
,
m
−
1
L
11
L
12
⋯
L
1
,
m
M
21
M
22
⋯
M
2
,
m
−
1
L
21
L
22
⋯
L
2
,
m
⋮
⋮
⋯
⋮
⋮
⋮
⋯
⋮
M
m
,
1
M
m
,
2
⋯
M
m
,
m
−
1
L
m
,
1
L
m
,
2
⋯
L
m
,
m
]
[
Δ
θ
1
Δ
θ
2
⋮
Δ
θ
n
−
1
Δ
U
1
/
U
1
Δ
U
2
/
U
2
⋮
Δ
U
m
/
U
m
]
\begin{bmatrix} \Delta P_{1}\left(\boldsymbol{x}\right)\\ \Delta P_{2}\left(\boldsymbol{x}\right)\\ \vdots\\ \Delta P_{n-1}\left(\boldsymbol{x}\right)\\ \Delta Q_{1}\left(\boldsymbol{x}\right)\\ \Delta Q_{2}\left(\boldsymbol{x}\right)\\ \vdots\\ \Delta Q_{m}\left(\boldsymbol{x}\right)\end{bmatrix}=\begin{bmatrix} H_{11}&H_{12}&\cdots&H_{1,m-1}&N_{11}&N_{12}&\cdots&N_{1,m}\\ H_{21}&H_{22}&\cdots&H_{2,m-1}&N_{21}&N_{22}&\cdots&N_{2,m}\\ \vdots&\vdots&\vdots&\cdots&\vdots&\vdots&\vdots&\cdots\\ H_{n-1,1}&H_{n-1,2}&\cdots&H_{n-1,m-1}&N_{n-1,1}&N_{n-1,2}&\cdots&N_{n-1,m}\\ M_{11}&M_{12}&\cdots&M_{1,m-1}&L_{11}&L_{12}&\cdots&L_{1,m}\\ M_{21}&M_{22}&\cdots&M_{2,m-1}&L_{21}&L_{22}&\cdots&L_{2,m}\\ \vdots&\vdots&\cdots&\vdots&\vdots&\vdots&\cdots&\vdots\\ M_{m,1}&M_{m,2}&\cdots&M_{m,m-1}&L_{m,1}&L_{m,2}&\cdots&L_{m,m}\end{bmatrix}\begin{bmatrix} \Delta\theta_{1}\\ \Delta\theta_{2}\\ \vdots\\ \Delta\theta_{n-1}\\ \Delta U_{1}/U_{1}\\ \Delta U_{2}/U_{2}\\ \vdots\\ \Delta U_{m}/U_{m}\end{bmatrix}
ΔP1(x)ΔP2(x)⋮ΔPn−1(x)ΔQ1(x)ΔQ2(x)⋮ΔQm(x)
=
H11H21⋮Hn−1,1M11M21⋮Mm,1H12H22⋮Hn−1,2M12M22⋮Mm,2⋯⋯⋮⋯⋯⋯⋯⋯H1,m−1H2,m−1⋯Hn−1,m−1M1,m−1M2,m−1⋮Mm,m−1N11N21⋮Nn−1,1L11L21⋮Lm,1N12N22⋮Nn−1,2L12L22⋮Lm,2⋯⋯⋮⋯⋯⋯⋯⋯N1,mN2,m⋯Nn−1,mL1,mL2,m⋮Lm,m
Δθ1Δθ2⋮Δθn−1ΔU1/U1ΔU2/U2⋮ΔUm/Um
矩阵中,使用的是 Δ U i / U i \Delta U_{i}/U_{i} ΔUi/Ui而不是 Δ U i \Delta U_{i} ΔUi,只是为了让表达式在形式上保持一致。
雅可比矩阵各个非对角元素的计算为:
H
i
j
=
∂
Δ
P
i
∂
θ
j
=
−
U
i
U
j
(
G
i
j
sin
θ
i
j
−
B
i
j
cos
θ
i
j
)
N
i
j
=
∂
Δ
P
i
∂
U
j
U
j
=
−
U
i
U
j
(
G
i
j
cos
θ
i
j
+
B
i
j
sin
θ
i
j
)
M
i
j
=
∂
Δ
Q
i
∂
θ
j
=
U
i
U
j
(
G
i
j
cos
θ
i
j
+
B
i
j
sin
θ
i
j
)
L
i
j
=
∂
Δ
Q
i
∂
U
j
U
j
=
−
U
i
U
j
(
G
i
j
sin
θ
i
j
−
B
i
j
cos
θ
i
j
)
\begin{gathered} H_{ij}=\frac{\partial\Delta P_{i}}{\partial\theta_{j}}=-U_{i}U_{j}\left(G_{ij}\sin\theta_{ij}-B_{ij}\cos\theta_{ij}\right) \\ N_{ij}=\frac{\partial\Delta P_{i}}{\partial U_{j}}U_{j}=-U_{i}U_{j}\left(G_{ij}\cos\theta_{ij}+B_{ij}\sin\theta_{ij}\right) \\ M_{ij}=\frac{\partial\Delta Q_{i}}{\partial\theta_{j}}=U_{i}U_{j}\left(G_{ij}\cos\theta_{ij}+B_{ij}\sin\theta_{ij}\right) \\ L_{ij}=\frac{\partial\Delta Q_{i}}{\partial U_{j}}U_{j}=-U_{i}U_{j}\left(G_{ij}\sin\theta_{ij}-B_{ij}\cos\theta_{ij}\right) \end{gathered}
Hij=∂θj∂ΔPi=−UiUj(Gijsinθij−Bijcosθij)Nij=∂Uj∂ΔPiUj=−UiUj(Gijcosθij+Bijsinθij)Mij=∂θj∂ΔQi=UiUj(Gijcosθij+Bijsinθij)Lij=∂Uj∂ΔQiUj=−UiUj(Gijsinθij−Bijcosθij)
而且有以下的关系:
H
i
j
=
L
i
j
N
i
j
=
−
M
i
j
H_{ij}=L_{ij}\\\\ N_{ij}=-M_{ij}
Hij=LijNij=−Mij
各个对角元素的计算为:
H
i
i
=
∂
Δ
P
i
∂
θ
i
=
U
i
∑
j
=
1
j
≠
i
n
U
j
(
G
y
sin
θ
y
−
B
y
cos
θ
y
)
=
U
i
2
B
i
i
+
Q
i
(
x
)
N
i
i
=
∂
Δ
P
i
∂
U
i
U
i
=
−
U
i
∑
j
=
1
j
≠
i
n
U
j
(
G
y
cos
θ
y
+
B
y
sin
θ
y
)
−
2
U
i
2
G
i
i
=
−
U
i
2
G
i
i
−
P
i
(
x
)
M
i
i
=
∂
Δ
Q
i
∂
θ
i
=
−
U
i
∑
j
=
1
j
≠
i
n
U
j
(
G
i
j
cos
θ
i
j
+
B
i
j
sin
θ
i
j
)
=
U
i
2
G
i
i
−
P
i
(
x
)
L
i
i
=
∂
Δ
Q
i
∂
U
i
U
i
=
−
U
i
∑
j
=
1
j
≠
i
n
U
j
(
G
i
j
sin
θ
i
j
−
B
i
j
cos
θ
i
j
)
+
2
U
i
2
B
i
i
=
U
i
2
B
i
j
−
Q
i
(
x
)
\begin{aligned} &H_{ii}=\frac{\partial\Delta P_{i}}{\partial\theta_{i}}=U_{i}\sum_{j=1\atop j\neq i}^nU_{j}\left(G_{y}\sin\theta_{y}-B_{y}\cos\theta_{y}\right)=U_{i}^{2}B_{ii}+Q_{i}\left(x\right)\\ &N_{ii}=\frac{\partial\Delta P_{i}}{\partial U_{i}}U_{i}=-U_{i}\sum_{j=1\atop j\neq i}^nU_{j}\left(G_{y}\cos\theta_{y}+B_{y}\sin\theta_{y}\right)-2U_{i}^{2}G_{ii}\\ &=-U_{i}^{2}G_{ii}-P_{i}\left(\boldsymbol{x}\right)\\ &M_{ii}=\frac{\partial\Delta Q_{i}}{\partial\theta_{i}}=-U_{i}\sum_{j=1\atop j\neq i}^nU_{j}\left(G_{ij}\cos\theta_{ij}+B_{ij}\sin\theta_{ij}\right)=U_{i}^{2}G_{ii}-P_{i}\left(x\right)\\ &L_{ii}=\frac{\partial\Delta Q_{i}}{\partial U_{i}}U_{i}=-U_{i}\sum_{j=1\atop j\neq i}^nU_{j}\left(G_{ij}\sin\theta_{ij}-B_{ij}\cos\theta_{ij}\right)+2U_{i}^{2}B_{ii}\\ &=U_{i}^{2}B_{ij}-Q_{i}\left(\boldsymbol{x}\right) \end{aligned}
Hii=∂θi∂ΔPi=Uij=ij=1∑nUj(Gysinθy−Bycosθy)=Ui2Bii+Qi(x)Nii=∂Ui∂ΔPiUi=−Uij=ij=1∑nUj(Gycosθy+Bysinθy)−2Ui2Gii=−Ui2Gii−Pi(x)Mii=∂θi∂ΔQi=−Uij=ij=1∑nUj(Gijcosθij+Bijsinθij)=Ui2Gii−Pi(x)Lii=∂Ui∂ΔQiUi=−Uij=ij=1∑nUj(Gijsinθij−Bijcosθij)+2Ui2Bii=Ui2Bij−Qi(x)
修正方程可以简写为:
[
Δ
P
(
k
)
Δ
Q
(
k
)
]
=
−
[
H
(
k
)
N
(
k
)
M
(
k
)
L
(
k
)
]
[
Δ
θ
(
k
)
Δ
U
~
(
k
)
]
=
−
J
(
k
)
[
Δ
θ
(
k
)
Δ
U
~
(
k
)
]
\begin{bmatrix} \Delta \boldsymbol{P}^{(k)}\\ \Delta \boldsymbol{Q}^{(k)} \end{bmatrix}=-\begin{bmatrix} \boldsymbol{H}^{(k)} & \boldsymbol{N}^{(k)}\\ \boldsymbol{M}^{(k)} & \boldsymbol{L}^{(k)} \end{bmatrix} \begin{bmatrix} \Delta \boldsymbol{\theta}^{(k)}\\ \Delta \boldsymbol{\widetilde{U}}^{(k)} \end{bmatrix}=-\boldsymbol{J}^{(k)}\begin{bmatrix} \Delta \boldsymbol{\theta}^{(k)}\\ \Delta \boldsymbol{\widetilde{U}}^{(k)} \end{bmatrix}
[ΔP(k)ΔQ(k)]=−[H(k)M(k)N(k)L(k)][Δθ(k)ΔU
(k)]=−J(k)[Δθ(k)ΔU
(k)]
其中,
- Δ θ ( k ) = [ Δ θ 1 ( k ) Δ θ 2 ( k ) ⋯ Δ θ n − 1 ( k ) ] T \Delta \boldsymbol{\theta}^{(k)}=[\Delta\theta_{1}^{(k)}\quad\Delta\theta_{2}^{(k)}\quad\cdots\quad\Delta\theta_{n-1}^{(k)}]^T Δθ(k)=[Δθ1(k)Δθ2(k)⋯Δθn−1(k)]T, Δ U ~ ( k ) = [ Δ U 1 ( k ) Δ U 2 ( k ) ⋯ Δ U n − 1 ( k ) ] T \Delta \boldsymbol{\widetilde{U}}^{(k)}=[\Delta U_{1}^{(k)}\quad\Delta U_{2}^{(k)}\quad\cdots\quad\Delta U_{n-1}^{(k)}]^T ΔU (k)=[ΔU1(k)ΔU2(k)⋯ΔUn−1(k)]T。
- 而雅可比矩阵
J
(
k
)
\boldsymbol{J}^{(k)}
J(k)中的分块矩阵
H
(
k
)
,
N
(
k
)
,
M
(
k
)
,
L
(
k
)
\boldsymbol{H}^{(k)},\boldsymbol{N}^{(k)},\boldsymbol{M}^{(k)},\boldsymbol{L}^{(k)}
H(k),N(k),M(k),L(k)是在未知量的取值为
θ
(
k
)
,
U
~
(
k
)
\boldsymbol{\theta}^{(k)},\boldsymbol{\widetilde{U}}^{(k)}
θ(k),U
(k)时,带入上面元素的求取公式而得到的。修正方程已知雅可比矩阵和误差的矩阵,则可以求出来变量修正量矩阵,即
Δ
θ
(
k
)
,
Δ
U
~
(
k
)
\Delta \boldsymbol{\theta}^{(k)},\Delta \boldsymbol{\widetilde{U}}^{(k)}
Δθ(k),ΔU
(k),从而可以得出下一代的变量取值:
θ i ( k + 1 ) = θ i ( k ) + Δ θ i ( k ) ( i = 1 , ⋯ , n − 1 ) U i ( k + 1 ) = U i ( k ) + Δ U i ( k ) × U ~ i ( k ) ( i = 1 , ⋯ , m ) \theta_i^{(k+1)}=\theta_i^{(k)}+\Delta \theta_i^{(k)}\quad(i=1,\cdots,n-1)\\\\ U_i^{(k+1)}=U_i^{(k)}+\Delta U_i^{(k)}\times\widetilde{U}_i^{(k)}\quad(i=1,\cdots,m) θi(k+1)=θi(k)+Δθi(k)(i=1,⋯,n−1)Ui(k+1)=Ui(k)+ΔUi(k)×U i(k)(i=1,⋯,m)
以上就是计算潮流的迭代格式,可见形成雅可比矩阵和求解修正方程式牛顿潮流计算中的主要步骤。
雅可比矩阵具有以下的特点:
- 矩阵的阶数为n+m-1.
- 如果互导纳 Y i j = 0 Y_{ij}=0 Yij=0,那么其中的分块矩阵 H , N , M , L \boldsymbol{H},\boldsymbol{N},\boldsymbol{M},\boldsymbol{L} H,N,M,L的相应元素也为零。所以雅可比矩阵是稀疏矩阵。
- 矩阵的两个对角子矩阵
H
,
L
\boldsymbol{H},\boldsymbol{L}
H,L是不对称的,因为:
∂ Δ P i ∂ θ j ≠ ∂ Δ P j ∂ θ i ; ∂ Δ Q i ∂ U j ≠ ∂ Δ Q j ∂ U i \frac{\partial \Delta P_i}{\partial \theta_j}\neq \frac{\partial \Delta P_j}{\partial \theta_i};\frac{\partial \Delta Q_i}{\partial U_j}\neq \frac{\partial \Delta Q_j}{\partial U_i} ∂θj∂ΔPi=∂θi∂ΔPj;∂Uj∂ΔQi=∂Ui∂ΔQj - 矩阵的各个元素都是节点电压的有效值和相角的函数,所以在整个迭代过程中,所有元素都会随着节点电压相量的逐次修正而不断变化。所以牛顿潮流计算中的雅可比矩阵要在每一次迭代进行计算。
牛顿潮流计算收敛判据一般为:
∣
∣
Δ
P
(
k
)
∣
∣
∞
=
max
i
∣
Δ
P
i
(
k
)
∣
⩽
ε
且
∣
∣
Δ
Q
(
k
)
∣
∣
∞
=
max
i
∣
Δ
Q
i
(
k
)
∣
⩽
ε
||\Delta \boldsymbol{P}^{(k)}||_{\infty}=\max_i|\Delta P_i^{(k)}|\leqslant \varepsilon\quad且\quad||\Delta \boldsymbol{Q}^{(k)}||_{\infty}=\max_i|\Delta Q_i^{(k)}|\leqslant \varepsilon
∣∣ΔP(k)∣∣∞=imax∣ΔPi(k)∣⩽ε且∣∣ΔQ(k)∣∣∞=imax∣ΔQi(k)∣⩽ε
初值的给定
一般取电压有效值为1,即相等于额定电压,电压相角为0。
牛顿法潮流计算的步骤
- 输入系统的原始数据。
- 形成节点导纳矩阵。
- 给定功率误差的容许值 ε \varepsilon ε,给定平衡节点电压相角为0,是参考相角,然后给定节点电压有效值和相角初值: U i 0 = 1 ( i = 1 , ⋯ , m ) , θ i 0 = 1 ( i = 1 , ⋯ , n − 1 ) U_i^{0}=1\quad(i=1,\cdots,m),\theta_i^{0}=1\quad(i=1,\cdots,n-1) Ui0=1(i=1,⋯,m),θi0=1(i=1,⋯,n−1),将各个PQ节点电压有效值的初值组成相量 U ( 0 ) \boldsymbol{U}^{(0)} U(0),各PQ节点和PV节点电压相角的初值组成向量 θ ( 0 ) \boldsymbol{\theta}^{(0)} θ(0)。
- 设置迭代次数k=0。
- 应用 θ ( k ) , U ( k ) \boldsymbol{\theta}^{(k)},\boldsymbol{U}^{(k)} θ(k),U(k),各个PV节点电压有效值和平衡节点电压有效值和相角,按照有功功率和无功功率的误差计算公式计算各个PQ、PV节点的有功功率误差 Δ P i ( k ) \Delta P_i^{(k)} ΔPi(k),还有各个PQ节点的无功功率误差 Δ Q i ( k ) \Delta Q_i^{(k)} ΔQi(k),并组成功率误差向量 Δ P ( k ) , Δ Q ( k ) \Delta \boldsymbol{P}^{(k)},\Delta \boldsymbol{Q}^{(k)} ΔP(k),ΔQ(k)。
- 按照收敛判据,判断迭代是否收敛。如果收敛,则转向第11步,否则进行下一步。
- 应用 θ ( k ) , U ( k ) \boldsymbol{\theta}^{(k)},\boldsymbol{U}^{(k)} θ(k),U(k),计算出雅可比矩阵的各个元素,这样形成了修正方程中的雅可比矩阵 J ( k ) \boldsymbol{J}^{(k)} J(k)。
- 根据求出来的雅可比矩阵 J ( k ) \boldsymbol{J}^{(k)} J(k)和第5步计算出来的误差向量 Δ P ( k ) , Δ Q ( k ) \Delta \boldsymbol{P}^{(k)},\Delta \boldsymbol{Q}^{(k)} ΔP(k),ΔQ(k),按照修正方程式计算出 Δ θ ( k ) , Δ U ~ ( k ) \Delta \boldsymbol{\theta}^{(k)},\Delta \boldsymbol{\widetilde{U}}^{(k)} Δθ(k),ΔU (k)。
- 然后根据修正量 Δ θ ( k ) , Δ U ~ ( k ) \Delta \boldsymbol{\theta}^{(k)},\Delta \boldsymbol{\widetilde{U}}^{(k)} Δθ(k),ΔU (k),求出下一步的电压有效值和相角。
- 令k=k+1,返回第5步进入下一轮的迭代。
- 计算平衡节点发出的有功功率和无功功率,计算PV节点的无功功率等。
直角坐标形式的牛顿-拉夫逊潮流算法
仍然假设 1 , 2 , ⋯ , m 1,2,\cdots,m 1,2,⋯,m是PQ节点, m + 1 , ⋯ , n − 1 m+1,\cdots,n-1 m+1,⋯,n−1是PV节点,n是平衡节点。
有功功率和无功功率的误差求法为
Δ
P
i
=
P
G
i
−
P
L
i
−
e
i
∑
j
=
1
n
(
G
i
j
e
j
−
B
i
j
f
j
)
−
f
i
∑
j
=
1
n
(
G
i
j
f
j
+
B
i
j
e
j
)
(
i
=
1
,
2
,
⋯
,
n
−
1
)
Δ
Q
i
=
Q
G
i
−
Q
L
i
−
f
i
∑
j
=
1
n
(
G
i
j
e
j
−
B
i
j
f
j
)
+
e
i
∑
j
=
1
n
(
G
i
j
f
j
+
B
i
j
e
j
)
(
i
=
1
,
2
,
⋯
,
m
)
Δ
U
i
2
=
U
S
2
−
(
e
i
2
+
f
i
2
)
=
0
(
i
=
m
+
1
,
m
+
2
,
⋯
,
n
−
1
)
\Delta P_i=P_{Gi}-P_{Li}-e_{i}\sum_{j=1}^n\left(G_{ij}e_{j}-B_{ij}f_{j}\right)-f_{i}\sum_{j=1}^n\left(G_{ij}f_{j}+B_{ij}e_{j}\right) \quad\left(i=1,2,\cdots,n-1\right)\\\\ \Delta Q_i=Q_{Gi}-Q_{Li}-f_{i}\sum_{j=1}^n\left(G_{ij}e_{j}-B_{ij}f_{j}\right)+e_{i}\sum_{j=1}^n\left(G_{ij}f_{j}+B_{ij}e_{j}\right) \quad\left(i=1,2,\cdots,m\right)\\\\ \Delta U_{i}^{2}=U_{S}^{2}-\left(e_{i}^{2}+f_{i}^{2}\right)=0\left(i=m+1,m+2,\cdots,n-1\right)
ΔPi=PGi−PLi−eij=1∑n(Gijej−Bijfj)−fij=1∑n(Gijfj+Bijej)(i=1,2,⋯,n−1)ΔQi=QGi−QLi−fij=1∑n(Gijej−Bijfj)+eij=1∑n(Gijfj+Bijej)(i=1,2,⋯,m)ΔUi2=US2−(ei2+fi2)=0(i=m+1,m+2,⋯,n−1)
其中,
U
S
i
U_{Si}
USi是PV节点i的电压给定值,平衡节点的电压
e
n
=
U
S
n
,
f
n
=
0
e_n=U_{Sn},f_n=0
en=USn,fn=0
修正方程式为:
[
Δ
P
1
Δ
Q
1
⋮
Δ
P
m
Δ
Q
m
⋯
Δ
P
m
+
1
Δ
U
m
+
1
2
⋮
Δ
P
m
−
1
Δ
U
n
−
1
2
]
=
−
[
H
1
,
1
N
1
,
1
⋯
H
1
,
m
N
1
,
m
⋮
H
1
,
m
+
1
N
1
,
m
+
1
⋯
H
1
,
m
−
1
N
1
,
m
−
1
M
1
,
1
L
1
,
1
⋯
M
1
,
m
L
1
,
m
⋮
M
1
,
m
+
1
L
1
,
m
+
1
⋯
M
1
,
m
−
1
L
1
,
m
−
1
⋮
⋮
⋱
⋮
⋮
⋮
⋮
⋮
⋱
⋮
⋮
H
m
,
1
N
m
,
1
⋯
H
m
,
m
N
m
,
m
⋮
H
m
,
m
+
1
N
m
,
m
+
1
⋯
H
m
,
m
+
1
N
m
,
m
+
1
M
m
,
1
L
m
,
1
⋯
M
m
,
m
L
m
,
m
⋮
M
m
,
m
+
1
L
m
,
m
+
1
⋯
M
m
,
m
+
1
L
m
,
m
−
1
⋯
⋯
⋯
⋯
⋯
⋮
⋯
⋯
⋯
⋯
⋯
H
m
+
1
,
1
N
m
+
1
,
1
⋯
H
m
+
1
,
m
N
m
+
1
,
m
⋮
H
m
+
1
,
m
+
1
N
m
+
1
,
m
+
1
⋯
H
m
+
1
,
n
−
1
N
m
+
1
,
n
−
1
R
m
+
1
,
1
S
m
+
1
,
1
⋯
R
m
+
1
,
m
S
m
+
1
,
m
⋮
R
m
+
1
,
m
+
1
S
m
+
1
,
m
+
1
⋯
R
m
+
1
,
n
−
1
S
m
+
1
,
n
−
1
⋮
⋮
⋱
⋮
⋮
⋮
⋮
⋮
⋱
⋮
⋮
H
n
−
1
,
1
N
n
−
1
,
1
⋯
H
n
−
1
,
m
N
n
−
1
,
m
⋮
H
n
−
1
,
m
+
1
N
n
−
1
,
m
+
1
⋯
H
n
−
1
,
n
−
1
N
n
−
1
,
n
−
1
R
n
−
1
,
1
S
n
−
1
,
1
⋯
R
n
−
1
,
m
S
n
−
1
,
m
⋮
R
n
−
1
,
m
+
1
S
n
−
1
,
m
+
1
⋯
R
n
−
1
,
n
−
1
S
n
−
1
,
n
−
1
]
[
Δ
f
1
Δ
e
1
⋮
Δ
f
m
Δ
e
m
⋯
Δ
f
m
+
1
Δ
e
m
+
1
⋮
Δ
f
n
−
1
Δ
e
n
−
1
]
\begin{bmatrix} \Delta P_{1}\\\Delta Q_{1}\\\vdots\\\Delta P_{m}\\\Delta Q_{m}\\\cdots\\\Delta P_{m+1}\\\Delta U_{m+1}^{2}\\\vdots\\\Delta P_{m-1}\\\Delta U_{n-1}^{2} \end{bmatrix}= -\begin{bmatrix} H_{1,1}&N_{1,1}&\cdots&H_{1,m}&N_{1,m}&\vdots&H_{1,m+1}&N_{1,m+1}&\cdots&H_{1,m-1}&N_{1,m-1}\\ M_{1,1}&L_{1,1}&\cdots&M_{1,m}&L_{1,m}&\vdots&M_{1,m+1}&L_{1,m+1}&\cdots&M_{1,m-1}&L_{1,m-1}\\ \vdots&\vdots&\ddots&\vdots&\vdots&\vdots&\vdots&\vdots&\ddots&\vdots&\vdots\\ H_{m,1}&N_{m,1}&\cdots&H_{m,m}&N_{m,m}&\vdots&H_{m,m+1}&N_{m,m+1}&\cdots&H_{m,m+1}&N_{m,m+1}\\ M_{m,1}&L_{m,1}&\cdots&M_{m,m}&L_{m,m}&\vdots&M_{m,m+1}&L_{m,m+1}&\cdots&M_{m,m+1}&L_{m,m-1}\\ \cdots&\cdots&\cdots&\cdots&\cdots&\vdots&\cdots&\cdots&\cdots&\cdots&\cdots\\ H_{m+1,1}&N_{m+1,1}&\cdots&H_{m+1,m}&N_{m+1,m}&\vdots&H_{m+1,m+1}&N_{m+1,m+1}&\cdots&H_{m+1,n-1}&N_{m+1,n-1}\\ R_{m+1,1}&S_{m+1,1}&\cdots&R_{m+1,m}&S_{m+1,m}&\vdots&R_{m+1,m+1}&S_{m+1,m+1}&\cdots&R_{m+1,n-1}&S_{m+1,n-1}\\ \vdots&\vdots&\ddots&\vdots&\vdots&\vdots&\vdots&\vdots&\ddots&\vdots&\vdots\\ H_{n-1,1}&N_{n-1,1}&\cdots&H_{n-1,m}&N_{n-1,m}&\vdots&H_{n-1,m+1}&N_{n-1,m+1}&\cdots&H_{n-1,n-1}&N_{n-1,n-1}\\ R_{n-1,1}&S_{n-1,1}&\cdots&R_{n-1,m}&S_{n-1,m}&\vdots&R_{n-1,m+1}&S_{n-1,m+1}&\cdots&R_{n-1,n-1}&S_{n-1,n-1}\\ \end{bmatrix} \begin{bmatrix} \Delta f_{1}\\\Delta e_{1}\\\vdots\\\Delta f_{m}\\\Delta e_{m}\\\cdots\\\Delta f_{m+1}\\\Delta e_{m+1}\\\vdots\\\Delta f_{n-1}\\\Delta e_{n-1} \end{bmatrix}
ΔP1ΔQ1⋮ΔPmΔQm⋯ΔPm+1ΔUm+12⋮ΔPm−1ΔUn−12
=−
H1,1M1,1⋮Hm,1Mm,1⋯Hm+1,1Rm+1,1⋮Hn−1,1Rn−1,1N1,1L1,1⋮Nm,1Lm,1⋯Nm+1,1Sm+1,1⋮Nn−1,1Sn−1,1⋯⋯⋱⋯⋯⋯⋯⋯⋱⋯⋯H1,mM1,m⋮Hm,mMm,m⋯Hm+1,mRm+1,m⋮Hn−1,mRn−1,mN1,mL1,m⋮Nm,mLm,m⋯Nm+1,mSm+1,m⋮Nn−1,mSn−1,m⋮⋮⋮⋮⋮⋮⋮⋮⋮⋮⋮H1,m+1M1,m+1⋮Hm,m+1Mm,m+1⋯Hm+1,m+1Rm+1,m+1⋮Hn−1,m+1Rn−1,m+1N1,m+1L1,m+1⋮Nm,m+1Lm,m+1⋯Nm+1,m+1Sm+1,m+1⋮Nn−1,m+1Sn−1,m+1⋯⋯⋱⋯⋯⋯⋯⋯⋱⋯⋯H1,m−1M1,m−1⋮Hm,m+1Mm,m+1⋯Hm+1,n−1Rm+1,n−1⋮Hn−1,n−1Rn−1,n−1N1,m−1L1,m−1⋮Nm,m+1Lm,m−1⋯Nm+1,n−1Sm+1,n−1⋮Nn−1,n−1Sn−1,n−1
Δf1Δe1⋮ΔfmΔem⋯Δfm+1Δem+1⋮Δfn−1Δen−1
其中,非对角元素
(
i
≠
j
)
(i\neq j)
(i=j)计算方法为:
H
i
j
=
∂
Δ
P
i
∂
f
j
=
B
i
j
e
i
−
G
i
j
f
i
N
i
j
=
∂
Δ
P
i
∂
e
j
=
−
G
i
j
e
i
−
B
i
j
f
i
M
i
j
=
∂
Δ
Q
i
∂
f
j
=
B
i
j
f
i
+
G
i
j
e
i
=
−
N
i
j
L
i
j
=
∂
Δ
Q
i
∂
e
j
=
−
G
i
j
f
i
+
B
i
j
e
i
=
H
i
j
R
i
j
=
∂
Δ
U
i
2
∂
f
j
=
0
S
i
j
=
∂
Δ
U
i
2
∂
e
j
=
0
\begin{aligned} &H_{ij}=\frac{\partial\Delta P_{i}}{\partial f_{j}}=B_{ij}e_{i}-G_{ij}f_{i}\quad N_{ij}=\frac{\partial\Delta P_{i}}{\partial e_{j}}=-G_{ij}e_{i}-B_{ij}f_{i}\\ &M_{ij}=\frac{\partial\Delta Q_{i}}{\partial f_{j}}=B_{ij}f_{i}+G_{ij}e_{i}=-N_{ij}\quad L_{ij}=\frac{\partial\Delta Q_{i}}{\partial e_{j}}=-G_{ij}f_{i}+B_{ij}e_{i}=H_{ij}\\ &R_{ij}=\frac{\partial\Delta U_{i}^{2}}{\partial f_{j}}=0\quad S_{ij}=\frac{\partial\Delta U_{i}^{2}}{\partial e_{j}}=0\end{aligned}
Hij=∂fj∂ΔPi=Bijei−GijfiNij=∂ej∂ΔPi=−Gijei−BijfiMij=∂fj∂ΔQi=Bijfi+Gijei=−NijLij=∂ej∂ΔQi=−Gijfi+Bijei=HijRij=∂fj∂ΔUi2=0Sij=∂ej∂ΔUi2=0
对角元素
(
i
=
j
)
(i=j)
(i=j)的计算方法:
H
i
i
=
∂
Δ
P
i
∂
f
i
=
−
∑
j
=
1
n
(
G
i
j
f
j
+
B
i
j
e
j
)
−
G
i
i
f
i
+
B
i
i
e
i
N
i
i
=
∂
Δ
P
i
∂
e
i
=
−
∑
j
=
1
n
(
G
i
j
e
j
−
B
i
j
f
j
)
−
G
i
i
e
i
−
B
i
i
f
i
J
i
i
=
∂
Δ
Q
i
∂
f
i
=
−
∑
j
=
1
n
(
G
i
j
e
j
−
B
i
j
f
j
)
+
G
i
i
e
i
+
B
i
i
f
i
L
i
i
=
∂
Δ
Q
i
∂
e
i
=
∑
j
=
1
n
(
G
i
j
f
j
+
B
i
j
e
j
)
−
G
i
i
f
i
+
B
i
i
e
i
R
i
i
=
∂
Δ
U
i
2
∂
f
i
=
−
2
f
i
S
i
i
=
∂
Δ
U
i
2
∂
e
i
=
−
2
e
i
H_{ii}=\frac{\partial\Delta P_{i}}{\partial f_{i}}=-\sum_{j=1}^{n}\left(G_{ij}f_{j}+B_{ij}e_{j}\right)-G_{ii}f_{i}+B_{ii}e_{i}\\\\ N_{ii}=\frac{\partial\Delta P_{i}}{\partial e_{i}}=-\sum_{j=1}^{n}\left(G_{ij}e_{j}-B_{ij}f_{j}\right)-G_{ii}e_{i}-B_{ii}f_{i}\\\\ J_{ii}=\frac{\partial\Delta Q_{i}}{\partial f_{i}}=-\sum_{j=1}^{n}\left(G_{ij}e_{j}-B_{ij}f_{j}\right)+G_{ii}e_{i}+B_{ii}f_{i}\\\\ L_{ii}=\frac{\partial\Delta Q_{i}}{\partial e_{i}}=\sum_{j=1}^{n}\left(G_{ij}f_{j}+B_{ij}e_{j}\right)-G_{ii}f_{i}+B_{ii}e_{i}\\\\ R_{ii}=\frac{\partial\Delta U_{i}^{2}}{\partial f_{i}}=-2f_{i}\\\\ S_{ii}=\frac{\partial\Delta U_{i}^{2}}{\partial e_{i}}=-2e_{i}
Hii=∂fi∂ΔPi=−j=1∑n(Gijfj+Bijej)−Giifi+BiieiNii=∂ei∂ΔPi=−j=1∑n(Gijej−Bijfj)−Giiei−BiifiJii=∂fi∂ΔQi=−j=1∑n(Gijej−Bijfj)+Giiei+BiifiLii=∂ei∂ΔQi=j=1∑n(Gijfj+Bijej)−Giifi+BiieiRii=∂fi∂ΔUi2=−2fiSii=∂ei∂ΔUi2=−2ei
将修正方程写成下面的缩写形式:
[
Δ
P
Δ
Q
Δ
U
2
]
=
−
[
H
N
M
L
R
S
]
[
Δ
f
Δ
e
]
=
−
J
[
Δ
f
Δ
e
]
\begin{bmatrix} \Delta \boldsymbol{P}\\ \Delta \boldsymbol{Q}\\ \Delta \boldsymbol{U^2} \end{bmatrix}=- \begin{bmatrix} \boldsymbol{H} & \boldsymbol{N}\\ \boldsymbol{M} & \boldsymbol{L}\\ \boldsymbol{R} & \boldsymbol{S} \end{bmatrix} \begin{bmatrix} \Delta \boldsymbol{f}\\ \Delta \boldsymbol{e} \end{bmatrix}=- \boldsymbol{J}\begin{bmatrix} \Delta \boldsymbol{f}\\ \Delta \boldsymbol{e} \end{bmatrix}
ΔPΔQΔU2
=−
HMRNLS
[ΔfΔe]=−J[ΔfΔe]