SVM对sklearn自带手写数字数据集进行分类

本文介绍了如何利用sklearn的load_digits数据集进行手写数字分类,重点关注SVM模型的应用。通过实验,探讨了SVM在分类中的精确率和召回率,精确率衡量的是真阳结果与所有被判为阳性结果的比例,而召回率则是真阳结果与所有实际为阳性数据的比率。
摘要由CSDN通过智能技术生成

sklearn自带一些数据集,其中手写数字数据集可通过load_digits加载,我找到load_digits里头是这样

def load_linnerud():
    """Load and return the linnerud dataset (multivariate regression).

    Samples total: 20
    Dimensionality: 3 for both data and targets
    Features: integer
    Targets: integer

    Returns
    -------
    data : Bunch
        Dictionary-like object, the interesting attributes are: 'data' and
        'targets', the two multivariate datasets, with 'data' corresponding to
        the exercise and 'targets' corresponding to the physiological
        measurements, as well as 'feature_names' and 'target_names'.
    """
    base_dir = join(dirname(__file__), 'data/')
    # Read data
    data_exercise = np.loadtxt(base_dir + 'linnerud_exercise.csv', skiprows=1)
    data_physiological = np.loadtxt(b
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值