WPF框架中常用算法与实现
一、排序算法
1. 快速排序 (Quick Sort)
应用场景:大数据集合排序、性能敏感场景
public static void QuickSort(IList<int> list, int left, int right)
{
if (left < right)
{
int pivotIndex = Partition(list, left, right);
QuickSort(list, left, pivotIndex - 1);
QuickSort(list, pivotIndex + 1, right);
}
}
private static int Partition(IList<int> list, int left, int right)
{
int pivot = list[right];
int i = left - 1;
for (int j = left; j < right; j++)
{
if (list[j] <= pivot)
{
i++;
Swap(list, i, j);
}
}
Swap(list, i + 1, right);
return i + 1;
}
private static void Swap(IList<int> list, int i, int j)
{
int temp = list[i];
list[i] = list[j];
list[j] = temp;
}
WPF中使用示例:
// 在ViewModel中
public void SortData()
{
var data = new List<int> { 5, 2, 9, 1, 5, 6 };
QuickSort(data, 0, data.Count - 1);
// 更新UI绑定集合
MyDataCollection = new ObservableCollection<int>(data);
}
2. 归并排序 (Merge Sort)
应用场景:稳定排序需求、外部排序
public static void MergeSort(IList<int> list)
{
if (list.Count <= 1) return;
int mid = list.Count / 2;
var left = list.Take(mid).ToList();
var right = list.Skip(mid).ToList();
MergeSort(left);
MergeSort(right);
Merge(list, left, right);
}
private static void Merge(IList<int> list, IList<int> left, IList<int> right)
{
int i = 0, j = 0, k = 0;
while (i < left.Count && j < right.Count)
{
if (left[i] <= right[j])
list[k++] = left[i++];
else
list[k++] = right[j++];
}
while (i < left.Count)
list[k++] = left[i++];
while (j < right.Count)
list[k++] = right[j++];
}
二、搜索算法
1. 二分查找 (Binary Search)
应用场景:有序集合快速查找
public static int BinarySearch(IList<int> list, int target)
{
int left = 0, right = list.Count - 1;
while (left <= right)
{
int mid = left + (right - left) / 2;
if (list[mid] == target)
return mid;
else if (list[mid] < target)
left = mid + 1;
else
right = mid - 1;
}
return -1; // 未找到
}
WPF中使用示例:
// 在ViewModel中
public int FindItem(int target)
{
var sortedData = MyDataCollection.OrderBy(x => x).ToList();
int index = BinarySearch(sortedData, target);
if (index >= 0)
return sortedData[index];
return -1;
}
2. 深度优先搜索 (DFS)
应用场景:树形结构遍历、路径查找
public class TreeNode
{
public int Value { get; set; }
public List<TreeNode> Children { get; } = new List<TreeNode>();
}
public void DFS(TreeNode node, Action<TreeNode> action)
{
if (node == null) return;
action(node);
foreach (var child in node.Children)
{
DFS(child, action);
}
}
WPF中使用示例:
// 在ViewModel中
private void TraverseTree()
{
var root = GetTreeRoot(); // 获取树根节点
DFS(root, node =>
{
// 处理每个节点
Debug.WriteLine($"Visited node with value: {node.Value}");
});
}
三、图形算法
1. A*寻路算法
应用场景:游戏路径规划、导航系统
public class Node : IComparable<Node>
{
public Point Position { get; }
public Node Parent { get; set; }
public double GCost { get; set; } // 从起点到当前节点的成本
public double HCost { get; set; } // 从当前节点到目标的估计成本
public double FCost => GCost + HCost;
public Node(Point position)
{
Position = position;
}
public int CompareTo(Node other)
{
return FCost.CompareTo(other.FCost);
}
}
public List<Point> FindPath(Grid grid, Point start, Point target)
{
var openSet = new PriorityQueue<Node>();
var closedSet = new HashSet<Point>();
var startNode = new Node(start) { GCost = 0, HCost = Heuristic(start, target) };
openSet.Enqueue(startNode);
while (openSet.Count > 0)
{
var currentNode = openSet.Dequeue();
if (currentNode.Position == target)
return RetracePath(startNode, currentNode);
closedSet.Add(currentNode.Position);
foreach (var neighbor in GetNeighbors(grid, currentNode.Position))
{
if (closedSet.Contains(neighbor))
continue;
var neighborNode = new Node(neighbor)
{
GCost = currentNode.GCost + 1,
HCost = Heuristic(neighbor, target),
Parent = currentNode
};
if (!openSet.Contains(neighborNode) || neighborNode.GCost < GetNodeInOpenSet(openSet, neighbor).GCost)
{
openSet.Enqueue(neighborNode);
}
}
}
return null; // 无路径
}
private double Heuristic(Point a, Point b)
{
return Math.Abs(a.X - b.X) + Math.Abs(a.Y - b.Y); // 曼哈顿距离
}
private List<Point> RetracePath(Node startNode, Node endNode)
{
var path = new List<Point>();
var currentNode = endNode;
while (currentNode != startNode)
{
path.Add(currentNode.Position);
currentNode = currentNode.Parent;
}
path.Reverse();
return path;
}
WPF中使用示例:
// 在游戏ViewModel中
private List<Point> CalculatePath(Point start, Point target)
{
var grid = GameGrid; // 游戏网格
var path = Pathfinding.FindPath(grid, start, target);
// 更新UI显示路径
PathVisualization = new ObservableCollection<Point>(path);
return path;
}
2. 力导向布局算法
应用场景:关系图可视化、社交网络图
public class ForceDirectedLayout
{
private const double Repulsion = 1000;
private const double SpringLength = 50;
private const double SpringConstant = 0.1;
private const double Damping = 0.9;
public void UpdatePositions(List<Node> nodes, List<Edge> edges, double deltaTime)
{
// 计算斥力
foreach (var node1 in nodes)
{
node1.Velocity = new Vector(0, 0);
foreach (var node2 in nodes)
{
if (node1 == node2) continue;
var delta = node2.Position - node1.Position;
var distance = delta.Length;
if (distance > 0)
{
var force = Repulsion / (distance * distance);
node1.Velocity += delta.Normalize() * force / node1.Mass;
}
}
}
// 计算弹簧力
foreach (var edge in edges)
{
var delta = edge.To.Position - edge.From.Position;
var distance = delta.Length;
var displacement = (distance - SpringLength) * SpringConstant;
edge.From.Velocity -= delta.Normalize() * displacement / edge.From.Mass;
edge.To.Velocity += delta.Normalize() * displacement / edge.To.Mass;
}
// 更新位置
foreach (var node in nodes)
{
node.Velocity *= Damping;
node.Position += node.Velocity * deltaTime;
// 边界检查
node.Position = new Point(
Math.Max(0, Math.Min(node.Position.X, LayoutWidth)),
Math.Max(0, Math.Min(node.Position.Y, LayoutHeight))
);
}
}
}
WPF中使用示例:
// 在图表ViewModel中
private void StartLayoutAnimation()
{
var layout = new ForceDirectedLayout();
var timer = new DispatcherTimer(TimeSpan.FromMilliseconds(16), DispatcherPriority.Render,
(s, e) => UpdateLayout(layout), Dispatcher);
timer.Start();
}
private void UpdateLayout(ForceDirectedLayout layout)
{
layout.UpdatePositions(Nodes, Edges, 0.016); // 约60FPS
// 更新UI绑定
OnPropertyChanged(nameof(Nodes));
OnPropertyChanged(nameof(Edges));
}
四、数据结构算法
1. 前缀树(Trie)实现
应用场景:自动补全、拼写检查
public class TrieNode
{
public Dictionary<char, TrieNode> Children { get; } = new Dictionary<char, TrieNode>();
public bool IsEndOfWord { get; set; }
}
public class Trie
{
private readonly TrieNode _root = new TrieNode();
public void Insert(string word)
{
var node = _root;
foreach (var c in word)
{
if (!node.Children.ContainsKey(c))
node.Children[c] = new TrieNode();
node = node.Children[c];
}
node.IsEndOfWord = true;
}
public bool Search(string word)
{
var node = SearchPrefix(word);
return node != null && node.IsEndOfWord;
}
public bool StartsWith(string prefix)
{
return SearchPrefix(prefix) != null;
}
private TrieNode SearchPrefix(string prefix)
{
var node = _root;
foreach (var c in prefix)
{
if (!node.Children.TryGetValue(c, out node))
return null;
}
return node;
}
}
WPF中使用示例:
// 在搜索ViewModel中
private Trie _trie = new Trie();
public void BuildDictionary(IEnumerable<string> words)
{
foreach (var word in words)
{
_trie.Insert(word.ToLower());
}
}
public IEnumerable<string> GetSuggestions(string prefix)
{
var suggestions = new List<string>();
var node = _trie.SearchPrefix(prefix.ToLower());
if (node != null)
{
CollectWords(node, prefix, suggestions);
}
return suggestions;
}
private void CollectWords(TrieNode node, string prefix, List<string> suggestions)
{
if (node.IsEndOfWord)
suggestions.Add(prefix);
foreach (var kvp in node.Children)
{
CollectWords(kvp.Value, prefix + kvp.Key, suggestions);
}
}
2. 并查集(Disjoint Set Union)
应用场景:连通性检测、最小生成树
public class DisjointSet
{
private readonly int[] _parent;
private readonly int[] _rank;
public DisjointSet(int size)
{
_parent = Enumerable.Range(0, size).ToArray();
_rank = new int[size];
}
public int Find(int x)
{
if (_parent[x] != x)
{
_parent[x] = Find(_parent[x]); // 路径压缩
}
return _parent[x];
}
public void Union(int x, int y)
{
int rootX = Find(x);
int rootY = Find(y);
if (rootX != rootY)
{
// 按秩合并
if (_rank[rootX] > _rank[rootY])
_parent[rootY] = rootX;
else if (_rank[rootX] < _rank[rootY])
_parent[rootX] = rootY;
else
{
_parent[rootY] = rootX;
_rank[rootX]++;
}
}
}
}
WPF中使用示例:
// 在图形编辑ViewModel中
private DisjointSet _dsu;
public void InitializeGraph(int nodeCount)
{
_dsu = new DisjointSet(nodeCount);
}
public void ConnectNodes(int node1, int node2)
{
_dsu.Union(node1, node2);
// 更新连接可视化
UpdateConnections();
}
public bool AreConnected(int node1, int node2)
{
return _dsu.Find(node1) == _dsu.Find(node2);
}
五、优化与性能考虑
-
算法选择原则:
- 数据量小:简单算法更易维护
- 数据量大:优先考虑O(n log n)或更好的算法
- 实时性要求高:选择常数时间或线性时间算法
-
WPF特定优化:
- 避免在UI线程执行复杂计算
- 使用并行算法处理大数据集
- 对频繁更新的数据使用增量更新而非全量重绘
-
内存管理:
- 及时释放不再使用的对象引用
- 对大型数据结构考虑分块加载
- 使用对象池重用对象实例
通过合理选择和应用这些算法,可以显著提升WPF应用程序的性能和用户体验。在实际项目中,应根据具体需求和数据特点选择最合适的算法实现。