机器学习之SVM支持向量机(一)

本文详细介绍了SVM(支持向量机)的损失函数,强调最大间隔分类的重要性,并探讨了核函数,特别是Gaussian Kernel在SVM中的应用。通过对SVM损失函数的解析,展示了如何通过最大化间隔来优化分类器,并介绍了如何选择合适的C和σ²参数。
摘要由CSDN通过智能技术生成

我们思考这样一个问题,给两个标签,蓝色和红色点,数据有两个特征(x,y)。我们想要一个分类器,给定一对(x,y),能找到很好的分类边界,判断是蓝色点还是红色点。对于下图的数据,我们如何解决呢。本文通过引入Support Vector Machine(SVM)算法来详解此类问题。
01

1.SVM损失函数

针对前面介绍的机器学习之线性回归、机器学习之Logistic回归,我们已经了解Cost Function的概念,这里我们利用Logistic Regression的损失函数来引入SVM损失函数。

首先我们先复习下Logistic Regression Function
h θ = 1 1 + e − θ T x h_{\theta}=\frac{1}{1+e^{-\theta^Tx}} hθ=1+eθTx1
如果 y = 1 y=1 y=1,我们希望 h θ ≈ 1 h_{\theta}\approx1 hθ1,那么 θ T x ≫ 0 \theta^Tx\gg0 θTx0。如果 y = 0 y=0 y=0,我们希望 h θ ≈ 0 h_{\theta}\approx0 hθ0,那么 θ T x ≪ 0 \theta^Tx\ll0 θTx0。我们以Logistic Regression为例

L R C o s t E x a m p l e = − ( ( y l o g h θ ( x ) ) + ( 1 − y ) l o g ( 1 − h θ ( x ) ) ) LR Cost Example=-\left( (ylogh_\theta(x))+(1-y)log(1-h_\theta(x))\right) LRCostExample=((yloghθ(x))+(1y)log(1hθ(x)))

= − y l o g 1 1 + e − θ T x − ( 1 − y ) l o g ( 1 − 1 1 + e − θ T x ) =-ylog\frac{1}{1+e^{-\theta^Tx}}-(1-y)log(1-\frac{1}{1+e^{-\theta^Tx}}) =ylog1+eθTx1(1y)log(11+eθTx1)

  • y = 1 y=1 y=1时,此时 θ T x ≫ 0 \theta^Tx\gg0 θTx0,上述公式为 − y l o g 1 1 + e − θ T x -ylog\frac{1}{1+e^{-\theta^Tx}} ylog1+eθTx1,其中 z = θ T x z=\theta^Tx z=θTx。我们将曲线分为两段,下图中取 z = 1 z=1 z=1点,粉色线部分我们定义为 c o s t 1 ( z ) cost_1(z) cost1(z)
  • y = 0 y=0 y=0时,此时 θ T x ≪ 0 \theta^Tx\ll0 θTx0,上述公式为 − ( 1 − y ) l o g ( 1 − 1 1 + e − θ T x ) -(1-y)log(1-\frac{1}{1+e^{-\theta^Tx}}) (1y)log(11+eθTx1),其中 z = θ T x z=\theta^Tx z=θTx。我们将曲线分为两段,下图中取 z = − 1 z=-1 z=1点,粉色线部分我们定义为 c o s t 0 ( z ) cost_0(z) cost0(z)
  • c o s t 1 ( z ) cost_1(z) cost1(z) c o s t 0 ( z ) cost_0(z) cost0(z)便是我们希望的Cost Function曲线,和Logistic Function曲线非常接近, c o s t 1 ( z ) cost_1(z) cost1(z) c o s t 0 ( z ) cost_0(z) cost0(z)分别代表y=1和y=0时的目标函数定义。

02

Logistic Regression的损失函数:
m i n θ 1 m [ ∑ i = 1 m y ( i ) ( − l o g h θ ( x ( i ) ) ) + ( 1 − y ( i ) ) ( − l o g ( 1 − h θ ( x ( i ) ) ) ) ] + λ 2 m ∑ j = 1 n θ j 2 min_{\theta}\frac{1}{m}[\sum_{i=1}^{m}y^{(i)}(-logh_{\theta}(x^{(i)}))+(1-y^{(i)})(-log(1-h_{\theta}(x^{(i)})))]+\frac{\lambda}{2m}\sum_{j=1}^{n}\theta_{j}^{2} minθm1[i=1my(i)(loghθ(x(i)))+(1

  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值