MCMC采样和M-H采样

本文介绍了马尔可夫链的细致平稳条件,并探讨了如何通过MCMC采样方法解决分布采样问题。M-H采样作为MCMC的一种优化,通过调整接受率解决了采样效率低下的问题,适用于高维数据的采样。文章还讨论了M-H采样在大数据场景下面临的挑战。
摘要由CSDN通过智能技术生成

MCMC之马尔可夫链之中我们介绍到,给定一个概率分布π,很难直接找到对应的马尔可夫链状态转移矩阵P。只要解决这个问题,我们便可以找到一种通用的概率分布采样方法,进而用于蒙特卡罗模拟。下面我们来介绍如何找到马尔可夫链所对应的状态转移矩阵P。

1.马尔可夫链细致平稳条件

解决平稳分布π所对应的马尔可夫链状态转移矩阵P之前,我们先看一下马尔可夫链的细致平稳条件。其定义为:如果非周期马尔可夫链的状态转移矩阵P和概率分布π(x)对于所有的i,j满足下列方程,则概率分布π(x)是状态转移矩阵P的平稳分布。
π ( i ) P ( i , j ) = π ( j ) P ( j , i ) \pi(i)P(i,j) = \pi(j)P(j,i) π(i)P(i,j)=π(j)P(j,i)
证明如下,由细致平稳条件有
∑ i = 1 ∞ π ( i ) P ( i , j ) = ∑ i = 1 ∞ π ( j ) P ( j , i ) = π ( j ) ∑ i = 1 ∞ P ( j , i ) = π ( j ) \sum _{i=1}^{\infty}\pi(i) P(i,j) = \sum _{i=1} ^{\infty} \pi(j) P(j,i) = \pi(j) \sum _{i=1} ^{\infty}P(j,i) = \pi(j) i=1π(i)P(i,j)=i=1π(j)P(j,i)=π(j)i=1P(j,i)=π(j)
将上式用矩阵表示为
π P = π \pi P = \pi πP=π
上式满足马尔可夫链的收敛性质,也就是说,只要我们找到可以使概率分布π(x)满足细致平稳分布的矩阵P即可。不过仅仅从细致平稳条件还是很难找到合适的矩阵P,比如我们的目标平稳分布使π(x),随机找一个马尔可夫链状态转移矩阵Q,他是很难满足细致平稳条件的,即
π ( i ) Q ( i , j ) ≠ π ( j ) Q ( j , i ) \pi (i) Q(i,j) \neq \pi(j) Q(j,i) π(i)Q(i,j)̸=π(j)Q(j,i)
那么有什么办法可以使这个等式相等呢?

2.MCMC采样

由于一般情况下,目标平稳分布π(x)和某一马尔可夫链状态转移矩阵Q不满足细致平稳条件,即
π ( i ) Q ( i , j ) ≠ π ( j ) Q ( j , i ) \pi (i) Q(i,j) \neq \pi(j) Q(j,i)

  • 0
    点赞
  • 5
    收藏
    觉得还不错? 一键收藏
  • 1
    评论
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值