MCMC(三)MCMC采样和M-H采样

  在MCMC(二)马尔科夫链中我们讲到给定一个概率平稳分布ππ, 很难直接找到对应的马尔科夫链状态转移矩阵PP。而只要解决这个问题,我们就可以找到一种通用的概率分布采样方法,进而用于蒙特卡罗模拟。本篇我们就讨论解决这个问题的办法:MCMC采样和它的易用版M-H采样。

1. 马尔科夫链的细致平稳条件

    在解决从平稳分布ππ, 找到对应的马尔科夫链状态转移矩阵PP之前,我们还需要先看看马尔科夫链的细致平稳条件。定义如下:

    如果非周期马尔科夫链的状态转移矩阵PP和概率分布π(x)π(x)对于所有的i,ji,j满足:

π(i)P(i,j)=π(j)P(j,i)π(i)P(i,j)=π(j)P(j,i)

    则称概率分布π(x)π(x)是状态转移矩阵PP的平稳分布。

    证明很简单,由细致平稳条件有:

∑i=1∞π(i)P(i,j)=∑i=1∞π(j)P(j,i)=π(j)∑i=1∞P(j,i)=π(j)∑i=1∞π(i)P(i,j)=∑i=1∞π(j)P(j,i)=π(j)∑i=1∞P(j,i)=π(j)

    将上式用矩阵表示即为:

πP=ππP=π

    即满足马尔可夫链的收敛性质。也就是说,只要我们找到了可以使概率分布π(x)π(x)满足细致平稳分布的矩阵PP即可。这给了我们寻找从平稳分布ππ, 找到对应的马尔科夫链状态转移矩阵PP的新思路。

    不过不幸的是,仅仅从细致平稳条件还是很难找到合适的矩阵PP。比如我们的目标平稳分布是π(x)π(x),随机找一个马尔科夫链状态转移矩阵QQ,它是很难满足细致平稳条件的,即:

π(i)Q(i,j)≠π(j)Q(j,i)π(i)Q(i,j)≠π(j)Q(j,i)

    那么如何使这个等式满足呢?下面我们来看MCMC采样如何解决这个问题。

2. MCMC采样

    由于一般情况下,目标平稳分布π(x)π(x)和某一个马尔科夫链状态转移矩阵QQ不满足细致平稳条件,即

π(i)Q(i,j)≠π(j)Q(j,i)π(i)Q(i,j)≠π(j)Q(j,i)

    我们可以对上式做一个改造,使细致平稳条件成立。方法是引入一个α(i,j)α(i,j),使上式可以取等号,即:

π(i)Q(i,j)α(i,j)=π(j)Q(j,i)α(j,i)π(i)Q(i,j)α(i,j)=π(j)Q(j,i)α(j,i)

  • 1
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
M-H(Metropolis-Hastings)采样是一种马尔可夫链蒙特卡洛(MCMC)算法,用于从复杂的概率分布中进行采样。与Gibbs采样类似,M-H采样也是一种基于马尔可夫链的迭代采样方法。 M-H采样的思想是通过接受-拒绝的方式,从一个简单的提议分布中采样得到样本,并根据接受概率决定是否接受这个样本。具体步骤如下: 1. 初始化初始样本。 2. 从提议分布中抽取一个候选样本。 3. 计算接受概率(Acceptance Probability): - 计算当前样本在目标分布下的概率密度值(目标概率密度)。 - 计算候选样本在目标分布下的概率密度值。 - 计算接受概率为两个概率密度的比例乘以候选样本被提议分布抽取的概率密度。 4. 生成一个[0,1]之间的随机数。 5. 如果随机数小于等于接受概率,则接受候选样本作为下一个样本;否则,保持当前样本不变。 6. 重复步骤2到步骤5,直到达到预定的迭代次数或满足收敛条件。 M-H采样中的提议分布通常是一个简单的分布,如高斯分布。接受概率的计算允许采样从低概率区域向高概率区域移动,从而得到符合目标分布的样本。 需要注意的是,M-H采样的性能与提议分布的选择密切相关。如果提议分布过于简单,可能导致采样效率低下;如果提议分布与目标分布差异较大,可能导致高拒绝率。因此,在实际应用中,选择合适的提议分布是一个关键问题。 总之,M-H采样是一种常用的MCMC算法,用于从复杂的概率分布中进行采样,尤其适用于无法直接从目标分布中采样的情况。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值