深度学习与Pytorch入门实战(十四)时间序列预测

本文介绍如何使用Pytorch进行时间序列预测,通过一个正弦函数的实例,详细阐述问题描述、代码实现及梯度裁剪的步骤。内容包括设定问题,如预测特定时刻的正弦曲线,并探讨了输入数据的shape及其处理方式。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

笔记摘抄

1. 问题描述

  • 已知 [k, k+n)时刻的正弦函数,预测 [k+t, k+n+t)时刻的正弦曲线。

  • 因为每个时刻曲线上的点是一个值,即feature_len=1

  • 如果给出50个时刻的点,即seq_len=50

  • 如果只提供一条曲线供输入,即batch=1

  • 输入的shape=[seq_len, batch, feature_len] = [50, 1, 1]。

2. 代码实现

import torch
import torch.nn as nn
import numpy as np
import torch.optim as optim
from matplotlib import pyplot as plt 

input_size = 1
batch_size = 1
hidden_size = 16
num_layers = 1
output_size = 1

class Net(nn.Module):

    def __init__(self):
        super().__init__()

        self.rnn = nn.RNN(
            input_size=input_size,       
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值