学习率预热(transformers.get_linear_schedule_with_warmup)

本文介绍了学习率预热的概念,特别是在深度学习优化过程中如何使用`transformers.get_linear_schedule_with_warmup`。该方法使学习率在预热阶段从0线性增加到初始设定值,然后线性下降到0,以改善模型训练的效果。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

学习率预热

  • 在预热期间,学习率从0线性增加到优化器中的初始lr。

  • 在预热阶段之后创建一个schedule,使其学习率从优化器中的初始lr线性降低到0

Parameters

  • optimizer (Optimizer) – The optimizer for which to schedule the learning rate.

  • num_warmup_steps (int) – The number of steps for the warmup phase.

  • num_training_steps (int) – The total number of training steps.

  • last_epoch (int, optional, defaults to -1) – The index of the last epoch w

评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值