PyTorch在NLP任务中使用预训练词向量

1. 数据集

import numpy as np
import torch
from torch import nn, optim
from torchtext import data, datasets

import numpy as np
import torch
from torch import nn, optim
from torchtext import data, datasets

# use torchtext to load data, no need to download dataset
# set up fields
# 两个Field对象定义字段的处理方法(文本字段、标签字段)
TEXT = data.Field(tokenize='spacy')  # 分词
LABEL = data.LabelField(dtype=torch.float)

# make splits for data
# IMDB共50000影评,包含正面和负面两个类别。数据被前面的Field处理
# 按照(TEXT, LABEL) 分割成 训练集,测试集
train_data, test_data = datasets.IMDB.splits(TEXT, LABEL)

print('len of train data:', len(train_data))        # 25000
print('len of test data:', len(test_data))          # 25000

# torchtext.data.Example : 用来表示一个样本,数据+标签
print(train_data.examples[15].text)       
  • 0
    点赞
  • 10
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值