两个函数的卷积
本质上就是先将一个函数翻转,然后进行滑动叠加。
在连续情况下,叠加指的是对两个函数的乘积求积分。
在离散情况下就是加权求和。
它在不同的领域有着不同的解释
在热力系统中,卷积通常用来计算持续添加的燃料,在燃烧过程中产生的总热量。
在信号分析中,卷积又被用于计算输入信号,对系统产生影响的累积效果。
在概率论中,卷积会被用来计算二维随机变量的概率密度。
在经济学中,卷积还可以用来计算连续复利。
在机器学上的应用,卷积在数字图像处理中的有趣现象。
接下来用3x3的卷积核举例,数字图像在计算机中的表示为三色通道的数字矩阵
进行卷积操作时,卷积核与图像对应位置相乘再求和
将求得的和放在被卷积操作的图中心的位置
再让卷积核在图像上移动,重复求和并放在中心位置,从而求出所有位置的图像卷积值,从而求出所有位置的图像卷积值。
图像卷积操作在不同的卷积核下具备不同的意义
如果用一个全为1/9的3x3卷积核做卷积操作,相等于取9个值得平均值代替中间像素的值。所以一定会起到一定的平滑效果。
换一个高斯卷积核,它在水平和垂直方向平滑上都满足高斯分布。它突出了中心像素在平滑后的权重,相比于均值滤波而言,有着更好的平滑效果。
这个卷积核把像素周围的差值变大,这意味着这个卷积操作会增加像素周围的对比度,从而使图像显得棱角分明画面清晰,它起到了锐化图像的效果。
这个卷积核的卷积操作得到了图像的轮廓效果,因为它相等于求了图像水平方向的一阶导数。
而这个卷积核会将图像整体向一个方向平移。