矩阵分析与应用-06-随机向量02

1.均值向量

随机向量的最重要统计运算为数学期望。考查mx1随机向量x(\xi)=[x_1(\xi),x_2(\xi),...,x_m(\xi)]T。令随机变量x_i(\xi)的均值E{x_i(\xi)}=\mu _i;,则随机向量的数学期望称为均值向量,记作\mu_x:

\mu_x = E{x(\xi)} = \begin{bmatrix} E{x_1(\xi)}\\ ...\\ E{x_m(\xi)} \end{bmatrix} = \begin{bmatrix} \mu_1\\ ...\\ \mu_m \end{bmatrix}

其中数学期望为:

E{x(\xi)} = \int ^\infty_{-\infty}xf(x)dx

2.相关矩阵与协方差矩阵

均值向量楚随机向量的一阶矩,它描述随机向量的元素围绕其均值的散布情况。与均值向量不同,随机向址的二阶矩为矩阵,它描述随机向量分布的散布情况。

随机向量的自相关矩阵定义为

R_x = E\left \{x(\xi)x^H(\xi) \right \} = \begin{bmatrix} r_{11} &... &r_{1m} \\ ...&... &... \\ r_{m1}&... &r_{mm} \end{bmatrix}

其中,r_{ii}表示随机变量x_i(\xi)的自相关函数:

r_{ii}=E\left \{ |x_i(\xi)|^2 \right\}

其中,r_{ij}(i≠j)表示随机变量x_i(\xi)x_j(\xi)的互相关函数:

r_{ij}=E\left \{ x_i(\xi)x_j^*(\xi) \right\}

3.两个随机向量的统计不相关与正交

当采样点\xi取一系列值时,随机变量序列{x_i(\xi)}构成一随机过程或信号。由于随机信号减去白己的均值后,只剩下随机变化部分,所以协方差函数给出的是两个随机信号x_i(\xi)x_j(\xi)之间随机变化部分的相乘。一般说来,两个随机信号的随机变化部分中的共性部分的相乘总是取相同的符号,使得共性部分得到加强,而保留下米。与之不同,两个信号的非共性部分则是随机的,它们的乘积有时取正,有时取负,通过数学期望的平均运算后,趋于相互抵消。这意味着,互协方差函数能够把两个信号之间随机变化的共性部分提取出来,并抑制掉非共性部分。因此,互协方差函数描述了两个信号x_i(\xi)x_j(\xi)之间的相关(联)程度。即是说,互协方差函数越大,则这两个随机信号的相关程度越强;反之,相关程度越弱。但是,这种使用互协方差的绝对大小度量两个随机向量的相关程度并不方便。

两个随机变x(\xi)y(\xi)之间的相关系数定义为

\rho _{xy} = \frac{c_xy}{\sqrt{E\left \{ |x(\xi)|^2 \right\}}\sqrt{E\left \{ |y(\xi)| ^2\right\}}} = \frac{c_{xy}}{\sigma_x \sigma_y}

  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值