【回归分析】02. 随机向量(2)

这篇博客详细介绍了正态随机向量的二次型,包括其方差公式和非中心χ²分布的性质。通过定理和推论阐述了如何判断二次型是否服从χ²分布及其条件。此外,还讨论了矩阵微商的概念,给出了矩阵函数的微商计算规则。这些理论在回归分析和统计推断中具有重要意义。
摘要由CSDN通过智能技术生成

【回归分析】2. 随机向量(2)

2.4 正态随机向量的二次型

定理 2.4.1:正态随机向量的二次型的方差:

(1) 设 X ∼ N n ( μ , Σ ) X\sim N_n(\mu,\Sigma) XNn(μ,Σ) A A A n × n n\times n n×n 的实对称矩阵,则
V a r ( X ′ A X ) = 2 t r ( A Σ ) 2 + 4 μ ′ A Σ A μ   . {\rm Var}\left(X'AX\right)=2{\rm tr}(A\Sigma)^2+4\mu'A\Sigma A\mu \ . Var(XAX)=2tr(AΣ)2+4μAΣAμ .
(2) 设 X ∼ N n ( μ , σ 2 I n ) X\sim N_n\left(\mu,\sigma^2I_n\right) XNn(μ,σ2In) A A A n × n n\times n n×n 的实对称矩阵,则
V a r ( X ′ A X ) = 2 σ 4 t r ( A 2 ) + 4 σ 2 μ ′ A 2 μ   . {\rm Var}\left(X'AX\right)=2\sigma^4{\rm tr}\left(A^2\right)+4\sigma^2\mu'A^2\mu \ . Var(XAX)=2σ4tr(A2)+4σ2μA2μ .

(1) 设 Y = Σ − 1 / 2 X Y=\Sigma^{-1/2}X Y=Σ1/2X ,则 Y ∼ N ( Σ − 1 / 2 μ , I n ) Y\sim N\left(\Sigma^{-1/2}\mu,I_n\right) YN(Σ1/2μ,In) ,所以 Y Y Y 的各个分量相互独立,且有
V a r ( X ′ A X ) = V a r ( Y ′ Σ 1 / 2 A Σ 1 / 2 Y )   . {\rm Var}\left(X'AX\right)={\rm Var}\left(Y'\Sigma^{1/2}A\Sigma^{1/2}Y\right) \ . Var(XAX)=Var(YΣ1/2AΣ1/2Y) .
把问题转化为求 Y Y Y 的二次型的方差,注意到
m 3 = E [ Y i − E ( Y i ) ] 3 = 0   , m 4 = E [ Y i − E ( Y i ) ] 4 = 3   . m_3={\rm E}\left[Y_i-{\rm E}(Y_i)\right]^3=0 \ , \quad m_4={\rm E}\left[Y_i-{\rm E}(Y_i)\right]^4=3 \ . m3=E[YiE(Yi)]3=0 ,m4=E[YiE(Yi)]4=3 .
由定理 2.2.2 可知
V a r ( Y ′ Σ 1 / 2 A Σ 1 / 2 Y ) = 2 t r ( A Σ ) 2 + 4 ( Σ − 1 / 2 μ ) ′ ( Σ 1 / 2 A Σ 1 / 2 ) 2 ( Σ − 1 / 2 μ ) = 2 t r ( A Σ ) 2 + 4 μ ′ Σ − 1 / 2 Σ 1 / 2 A Σ A Σ 1 / 2 Σ − 1 / 2 μ = 2 t r ( A Σ ) 2 + 4 μ ′ A Σ A μ   . \begin{aligned} {\rm Var}\left(Y'\Sigma^{1/2}A\Sigma^{1/2}Y\right)&=2{\rm tr}\left(A\Sigma \right)^2+4\left(\Sigma^{-1/2}\mu\right)'\left(\Sigma^{1/2}A\Sigma^{1/2}\right)^2\left(\Sigma^{-1/2}\mu\right) \\ \\ &=2{\rm tr}\left(A\Sigma \right)^2+4\mu'\Sigma^{-1/2}\Sigma^{1/2}A\Sigma A \Sigma^{1/2}\Sigma^{-1/2}\mu \\ \\ &=2{\rm tr}\left(A\Sigma \right)^2+4\mu'A\Sigma A \mu \ . \end{aligned} Var(YΣ1/2AΣ1/2Y)=2tr(AΣ)2+4(Σ1/2μ)(Σ1/2AΣ1/2)2(Σ1/2μ)=2tr(AΣ)2+4μΣ1/2Σ1/2AΣAΣ1/2Σ1/2μ=2tr(AΣ)2+4μAΣAμ .
(2) 把 Σ = σ 2 I n \Sigma=\sigma^2I_n Σ=σ2In 代入 (1) 中结果,即可得证。

X ∼ N n ( μ , I n ) X\sim N_n(\mu,I_n) XNn(μ,In) ,称随机变量 Y = X ′ X Y=X'X Y=XX 的分布为自由度为 n n n ,非中心参数为 λ = μ ′ μ \lambda=\mu'\mu λ=μμ 的非中心 χ 2 \chi^2 χ2 分布,记为 Y ∼ χ 2 ( n , λ ) Y\sim\chi^2(n,\lambda) Yχ2(n,λ) 。当 λ = 0 \lambda=0 λ=0 时,称 Y Y Y 的分布为中心 χ 2 \chi^2 χ2 分布,记为 Y ∼ χ 2 ( n ) Y\sim\chi^2(n) Yχ2(n)

定理 2.4.2 χ 2 \chi^2 χ2 分布的性质:

(1) 可加性:设 Y i ∼ χ 2 ( n i , λ i ) ,   i = 1 , 2 , ⋯   , k Y_i\sim\chi^2(n_i,\lambda_i),\,i=1,2,\cdots,k Yiχ2(ni,λi),i=1,2,,k 且相互独立,则
Y 1 + Y 2 + ⋯ + Y k ∼ χ 2 ( n , λ )   , n = ∑ i = 1 k n i   , λ = ∑ i = 1 k λ i   . Y_1+Y_2+\cdots+Y_k\sim\chi^2(n,\lambda) \ , \quad n=\sum_{i=1}^kn_i \ , \quad \lambda=\sum_{i=1}^k\lambda_i \ . Y1+Y2++Ykχ2(n,λ) ,n=i=1kni ,λ=i=1kλi .
(2) 数字特征:设 Y ∼ χ 2 ( n , λ ) Y\sim\chi^2(n,\lambda) Yχ2(n,λ) ,则 E ( Y ) = n + λ ,   V a r ( Y ) = 2 n + 4 λ {\rm E}(Y)=n+\lambda,\,{\rm Var}(Y)=2n+4\lambda E(Y)=n+λ,Var(Y)=2n+4λ

(1) 非中心 χ 2 \chi^2 χ2 分布的特征函数为
Φ ( t ) = ( 1 − 2 i t ) − n / 2 exp ⁡ { i t λ 1 − 2 i t }   . \Phi(t)=(1-2it)^{-n/2}\exp\left\{\frac{it\lambda}{1-2it}\right\} \ . Φ(t)=(12it)n/2exp{ 12ititλ} .
Y = Y 1 + Y 2 + ⋯ + Y k Y=Y_1+Y_2+\cdots+Y_k Y=Y1+Y2++Yk ,其特征函数为 Φ ( t ) \Phi(t) Φ(t) ,设 Y i Y_i Yi 的特征函数为 Φ i ( t ) \Phi_i(t) Φi(t) ,利用 Y i Y_i Yi 的独立性可知
Φ ( t ) = Φ 1 ( t ) Φ 2 ( t ) ⋯ Φ k ( t ) = ∏ i = 1 k ( 1 − 2 i t ) − n i / 2 exp ⁡ { i t λ i 1 − 2 i t } = ( 1 − 2 i t ) − ( n 1 + n 2 + ⋯ + n k ) / 2 exp ⁡ { i t ( λ 1 + λ 2 + ⋯ + λ k ) 1 − 2 i t } = ( 1 − 2 i t ) − n / 2 exp ⁡ { i t λ 1 − 2 i t }   . \begin{aligned} \Phi(t)&=\Phi_1(t)\Phi_2(t)\cdots\Phi_k(t) \\ \\ &=\prod_{i=1}^k(1-2it)^{-n_i/2}\exp\left\{\frac{it\lambda_i}{1-2it}\right\} \\ \\ &=(1-2it)^{-(n_1+n_2+\cdots+n_k)/2}\exp\left\{\frac{it(\lambda_1+\lambda_2+\cdots+\lambda_k)}{1-2it}\right\} \\ \\ &=(1-2it)^{-n/2}\exp\left\{\frac{it\lambda}{1-2it}\right\} \ . \end{aligned} Φ(t)=Φ1(t)Φ2(t)Φk(t)=i=1k(12it)ni/2exp{ 12ititλi}=(12it)(n1+n2++nk)/2exp{ 12itit(λ1+λ2++λk)}=(12it)n/2exp{ 12ititλ} .
(2) 根据非中心 χ 2 \chi^2 χ2 分布的定义,
Y = d X 1 2 + X 2 2 + ⋯ + X n − 1 2 + X n 2   , Y\xlongequal{d}X_1^2+X_2^2+\cdots+X_{n-1}^2+X_n^2 \ , Yd X12+X22++Xn12+Xn2 ,
其中 X i ∼ N ( 0 , 1 ) ,   i = 1 , 2 , ⋯   , n − 1 ,   X n ∼ N ( λ , 1 ) X_i\sim N(0,1),\,i=1,2,\cdots,n-1,\,X_n\sim N\left(\sqrt{\lambda},1\right) XiN(0,1),i=1,2,,n1,XnN(λ ,1) ,且相互独立,于是有
E ( Y ) = ∑ i = 1 n E ( X i 2 )   , V a r ( Y ) = ∑ i = 1 n V a r ( X i 2 )   . {\rm E}(Y)=\sum_{i=1}^n{\rm E}\left(X_i^2\right) \ , \quad {\rm Var}(Y)=\sum_{i=1}^n{\rm Var}\left(X_i^2\right) \ . E(Y)=i=1nE(Xi2) ,Var(Y)=i=1nVar(Xi2) .
又因为

E ( X i 2 ) = V a r ( X i ) + [ E ( X i ) ] 2 = { 1   , i = 1 , 2 , ⋯   , n − 1   , 1 + λ   , i = n   , {\rm E}\left(X_i^2\right)={\rm Var}\left(X_i\right)+\left[{\rm E}\left(X_i\right)\right]^2= \left\{\begin{array}{ll} 1 \ , & i=1,2,\cdots,n-1 \ , \\ 1+\lambda \ , & i=n \ , \end{array}\right. E(Xi2)=Var(Xi)+[E(Xi)]2={ 1 ,1+λ ,i=1,2,,n1 ,i=n ,

所以 E ( Y ) = n + λ {\rm E}(Y)=n+\lambda E(Y)=n+λ

此外,利用正态分布的概率密度函数,经积分计算可得
E ( X i 4 ) = { 3   , i = 1 , 2 , ⋯   , n − 1   , λ 2 + 6 λ + 3   , i = n   , {\rm E}\left(X_i^4\right)=\left\{\begin{array}{ll} 3 \ , & i=1,2,\cdots,n-1 \ , \\ \lambda^2+6\lambda+3 \ , & i=n \ , \end{array}\right. E(Xi4)={ 3 ,λ2+6λ+3 ,i=1,2,,n1 ,i=n ,

于是有
V a r ( X i 2 ) = E ( X i 4 ) − [ E ( X i 2 ) ] 2 = { 2   , i = 1 , 2 , ⋯   , n − 1   , 4 λ + 2   , i = n   , {\rm Var}\left(X_i^2\right)={\rm E}\left(X_i^4\right)-\left[{\rm E}\left(X_i^2\right)\right]^2=\left\{\begin{array}{ll} 2 \ , & i=1,2,\cdots,n-1 \ , \\ 4\lambda+2 \ , & i=n \ , \end{array}\right. Var(Xi2)

  • 5
    点赞
  • 7
    收藏
    觉得还不错? 一键收藏
  • 1
    评论
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值