矩阵分析与应用-18-Moore-Penrose逆矩阵02

Moore-Penrose 逆矩阵的计算

方程求解法

第一步:分别求解矩阵方程得到X^H,Y.

AA^HX^H=A

A^HAY=A^H

第二步:计算广义逆矩阵A^\dagger=XAY

若矩阵A 为Hermitian矩阵,上述方法可以简化,因为以上两个矩阵方程等价为一个矩阵方程

A^2X^H=A

A^H=A,Moore-Penrose逆矩阵可以计算为

A^\dagger=XAX^H

算法1

步骤1计算矩阵B=AA^H

步骤2求解矩阵方程B^2X^H=B得到矩阵X^H

步骤3计算B的Moore-Penrose逆矩阵B^\dagger=(AA^H)^\dagger=XBX^H

步骤4计算矩阵A的Moore-Penrose逆矩阵A^\dagger=A^H(AA^H)^\dagger=A^HB^\dagger

算法2

步骤1计算矩阵B=AA^H

步骤2求解矩阵方程B^2X^H=B得到矩阵X^H

步骤3计算的Moore-Penrose逆矩阵B^\dagger=(A^HA)^\dagger=XBX^H

步骤4计算矩阵A的Moore-Penrose逆矩阵A^\dagger=(A^HA)^\dagger A^H=B^\dagger A^H

KL分解法

若A=KL是矩阵Amxn的满秩分解,则

G=L^H(K^HAL^H)^{-1}K^H

递推法

算法3

初始值A_1^\dagger=a_1^\dagger=(a_1^Ha_1)^{-1}a_1^H

递推令k= 2,3,…- ,n,进行以下计算:

d_k=A^\dagger_{k-1}a_k

b_k=\begin{cases} (1+d_k^Hd_k)^{-1}d_k^HA_{k-1}^\dagger & d_k^Hd_k\neq -1 \\ (a_k-A_{k-1}d_k)^\dagger &d_k^Hd_k= -1 \end{cases}

A_k^\dagger=\begin{bmatrix} A^\dagger_{k-1}d_kb_k\\ b_k \end{bmatrix}

迹方法

步骤1计算矩阵B=AA^H

步骤2令C_1=I

步骤3计算

C_{i+1}=\frac{1}{i}tr(C_iB)I-C_iB,i=1,2,...,r-1

步骤4计算

A^\dagger=\frac{r}{tr(C_iB)}C_iA^T

注:C_{i+1}B=O,tr(C_iB)\neq 0.

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值