《基于CEEMDAN-小波包分析的隧道爆破信号去噪方法》论文思路

在这里插入图片描述
相比于小波降噪,小波包分析具有更高的频率分辨率,可以进一步消除高频部分存在的噪声余量,提高去噪精度
在这里插入图片描述

依据EEMD 分解的取值范围,利用“试错法”得到本次试验中CEEMDAN分解的特征参数为:正负高斯白噪声标准差为0.2,加入噪声的次数为100,允许的最大筛选迭代次数为3 000。——怎么一个试错的情况?

具体的算法和方法和前两篇差不多,甚至没有上一篇更有新意,只是提出了一个新的评价去噪效果和能量分布的策略
在这里插入图片描述
在这里插入图片描述

确实红的作为被降噪的在低频能量更多

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值