1. Beta 函数
如果随机变量
X
服从参数为 n 和
p
的二项分布,那么它的概率由概率质量函数(对于连续随机变量,则为概率密度函数)为:
p ( x ) = ( n x ) q x ( 1 − q ) n − x (1)
把
( 1 )
表示为变量
q
的函数,即只有
q 这一个变量,写成如下形式
f ( q ) ∝ q a ( 1 − q ) b (2)
其中
a
和
b 是常量.
为了把
( 2 )
变成一个分布,可以给它乘上一个因子,使它对
q
从0到1积分为1即可.
并且这个因子通常是
a 和
b
的函数,而不是
q 的.
B ( a + 1 , b + 1 ) = ∫ 1 0 q a ( 1 − q ) b d q (3)
那么规范化后的
( 2 )
就是一个分布了
f ( q ; a + 1 , b + 1 ) = q a ( 1 − q ) b ∫ 1 0 q a ( 1 − q ) b d q = q a ( 1 − q ) b B ( a + 1 , b + 1 ) (4)
取
α = a + 1
,
β = b + 1
,代入到
( 3 ) , ( 4 )
,并将
( 3 )
中的积分变量
q
改为 t , 将
( 4 )
中变量
q
改为 x ,得
B ( α , β ) = ∫ 1 0 t α − 1 ( 1 − t ) β − 1 d t (5)
f ( x ; α , β ) = x α − 1 ( 1 − x ) β − 1 ∫ 1 0 x α − 1 ( 1 − x ) β − 1 d x = x α − 1 ( 1 − x ) β − 1 ∫ 1 0 u α − 1 ( 1 − u ) β − 1 d u = x α − 1 ( 1 − x ) β − 1 B ( α , β ) (6)
这里,
( 5 )
就是 Beta 函数,
( 6 )
就是 Beta 分布. 下图为 Beta 分布的概率密度函数和累积密度函数.图片来自Wiki
令
t = s i n 2 θ
,代入
( 5 )
,得
B ( α , β ) = 2 ∫ π 2 0 sin 2 α − 1 θ cos 2 β − 1 θ d θ (7)
2. Beta 函数和 Gamma 函数的关系
Γ
函数定义及性质
Γ ( s ) = ∫ + ∞ 0 e − x x s − 1 d x (8)
Γ ( m ) = ( m − 1 ) ! (9)
由
( 8 )
,
( 9 )
,有
m ! n ! = ∫ ∞ 0 e − u u m d u ∫ ∞ 0 e − v v n d v
假设向长度为1的桌子上扔一个红球(如上图),它会落在0到1这个范围内,设这个长度值为
x
,再向桌上扔一个白球,那么这个白球落在红球左边的概率即为 x . 若一共扔了
n
次白球,其中每一次都是相互独立的, 假设落在红球左边的白球数量为 k ,那么随机变量
K
服从参数为 n 和
x
的二项分布,即 K ∼ b ( n , x ) , 有
P ( K = k | x ) = ( n k ) x k ( 1 − x ) n − k (10)
因为
X
服从
[ 0 , 1 ] 上的均匀分布,即
X ∼ U [ 0 , 1 ]
.
K
对每一个
x 都有上面的分布,对于所有可能的
x
,
K 的分布为
P ( K = k ) = ∫ 1 0 ( n k ) x k ( 1 − x ) n − k d x = ( n k ) ∫ 1 0 x k ( 1 − x ) n − k d x (11)
现在换种方式来丢球: 先将这
n + 1
个球都丢出来,再选择一个球作为红球,任何一个球被选中的概率均为
1 n + 1
,此时红球左边有
0 , 1 , 2... n
个球的概率均为
1 n + 1
,有
P ( K = k ) = ∫ 1 0 ( n k ) x k ( 1 − x ) n − k d x = ( n k ) ∫ 1 0 x k ( 1 − x ) n − k d x = 1 n + 1 (12)
得
∫ 1 0 x k ( 1 − x ) n − k d x = k ! ( n − k ) ! ( n + 1 ) ! (13)
由
( 5 ) , ( 9 ) , ( 13 )
得到
B e t a
函数和
Γ
函数的关系
B ( α , β ) = Γ ( α ) Γ ( β ) Γ ( α + β ) (14)
此式即为第一类欧拉积分
由此,
B e t a
分布
( 6 )
可写为
f ( x ; α , β ) = Γ ( α + β ) Γ ( α ) Γ ( β ) x α − 1 ( 1 − x ) β − 1 (15)
3. Beta 函数的重要性质
E [ X ] = ∫ 1 0 x f ( x ; α , β ) = ∫ 1 0 x x α − 1 ( 1 − x ) β − 1 B ( α , β ) d x = 1 B ( α , β ) ∫ 1 0 x α ( 1 − x ) β − 1 d x (16)
( 16 ) = B ( α + 1 , β ) B ( α , β ) ∫ 1 0 x α ( 1 − x ) β − 1 B ( α + 1 , β ) d x = B ( α + 1 , β ) B ( α , β ) = Γ ( α + 1 ) Γ ( β ) Γ ( α + 1 + β ) Γ ( α + β ) Γ ( α ) Γ ( β ) = α α + β (17)
上式标蓝处为分布
B e t a ( α + 1 , β )
, 所以积分为1