机器维修/干扰问题(Machine Repair/Interference problem)

机器维修问题(Machine Repair Problem,MRP)或称机器干扰问题(Machine Interference Problem)是排队问题中的典型问题,下面首先介绍排队论的基础知识和分析方法,接着介绍MRP的一些结论。

1 排队论基础知识

1.1 排队系统组成

排队系统由输入过程、排队规则和服务过程三部分组成。

  1. 输入过程:主要考虑因素包括顾客类型(有几种顾客)、顾客到达方式(一个一个到达还是分批到达)、顾客到达的相关性(以前的到达情况是否对以后的到达情况有影响)、顾客到达间隔时间的分布、间隔时间的分布是否与时间相关。
  2. 排队规则:包括损失制、等待制、混合制三种,通过最长等待队长和最长等待时间进行区分。损失制是指最长等待队长和最长等待时间为0,即服务台被占用时顾客不等待立即离开;等待制是指最长等待队长和最长等待时间为无穷大,顾客一直等到被服务为止;混合制是指设置有限的最长等待队长和最长等待时间,超过其中一个阈值时顾客离开。
  3. 服务过程:考虑因素包括服务机构类型(多服务台并联还是串联)、服务规则(先到先服务、后到先服务、随机、优先级排序)和服务时间分布三个。

基于上述组成,可以用六元组“顾客到达间隔时间的分布 / 服务时间分布 / 服务台数量 / 系统容量限制 / 顾客类型数量 / 服务规则”表示一个排队系统,符号表示为X/Y/Z/A/B/C,其中系统容量是指正在接受服务的人数和排队人数的总和。时间分布主要有指数分布(M)、常数(D)、k 阶爱尔朗(Erlang)分布( E k E_k Ek)、一般分布(G)等。

Remark:需要注意,当有多台服务台时,M/M/c排队系统是指c个服务台,只有一个等待队列。

1.2 系统指标

一个排队系统的优劣可以用以下指标衡量:

  1. 平均队长( L L L):指系统内顾客数(包括正被服务的顾客与排队等待服务的顾客)的数学期望;
  2. 平均排队长( L q L_q Lq):指系统内等待服务的顾客数的数学期望;
  3. 平均逗留时间( W W W):顾客在系统内时间(包括排队等待的时间和接受服务的时间)的数学期望;
  4. 平均等待时间( W q W_q Wq):指一个顾客在排队系统中排队等待时间的数学期望;
  5. 平均忙期( T b T_b Tb):指服务机构连续繁忙时间(顾客到达空闲服务机构起,到服务机 构再次空闲止的时间)长度的数学期望;

1.3 系统稳态分析

一般使用生灭过程进行排队系统分析。在排队系统中,称一个顾客的到达为“生”,一个顾客的离去为“灭”。定义 N ( t ) N(t) N(t)表示t时刻系统中的顾客数,则 { N ( t ) , t ≥ 0 } \{N(t), t\geq 0\} {N(t),t0}构成一个随机过程。对该随机过程引入如下假设。

假设1:当 N ( t ) = n N(t)=n N(t)=n时,

  1. 从t时刻开始到下一个顾客到达为止的时间间隔 T B T_B TB服从参数为 λ n \lambda_n λn的指数分布;
  2. 从t时刻开始到下一个顾客离开为止的时间间隔 T D T_D TD服从参数为 μ n \mu_n μn的指数分布;
  3. T B , T D T_B, T_D TB,TD是相互独立的随机变量。

{ N ( t ) , t ≥ 0 } \{N(t), t\geq 0\} {N(t),t0}满足假设1时,称该过程为一个生灭过程。可以使用以下马尔科夫链描述以上状态转换过程。

生灭过程

当系统达到平衡状态时,对每个状态有如下平衡方程:

状态平衡方程
0 μ 1 p 1 = λ 0 p 0 \mu_1 p_1 = \lambda_0 p_0 μ1p1=λ0p0
1 μ 0 p 0 + μ 2 p 2 = ( λ 1 + μ 1 ) p 1 \mu_0 p_0 + \mu_2 p_2 = (\lambda_1+\mu_1) p_1 μ0p0+μ2p2=(λ1+μ1)p1
2 μ 1 p 1 + μ 3 p 3 = ( λ 2 + μ 2 ) p 2 \mu_1 p_1 + \mu_3 p_3 = (\lambda_2+\mu_2) p_2 μ1p1+μ3p3=(λ2+μ2)p2
n μ n − 1 p n − 1 + μ n + 1 p n + 1 = ( λ n + μ n ) p n \mu_{n-1} p_{n-1} + \mu_{n+1} p_{n+1} = (\lambda_n+\mu_n) p_n μn1pn1+μn+1pn+1=(λn+μn)pn


C n = λ n − 1 λ n − 2 ⋯ λ 0 μ n μ n − 1 ⋯ μ 1 ,   n = 1 , 2 , ⋯ C_n = \frac{\lambda_{n-1}\lambda_{n-2}\cdots\lambda_{0}}{\mu_{n}\mu_{n-1}\cdots\mu_{1}}, ~n=1,2,\cdots Cn=μnμn1μ1λn1λn2λ0, n=1,2,
由平衡方程可得
p n = C n p 0 ,   n = 1 , 2 , ⋯ p_n = C_n p_0, ~n=1,2,\cdots pn=Cnp0, n=1,2,
由于概率分布要求 ∑ n = 0 ∞ p n = 1 \sum_{n=0}^\infty p_n=1 n=0pn=1,将上式代入可得
p 0 = 1 1 + ∑ n = 0 ∞ C n p_0 = \frac{1}{1+\sum_{n=0}^\infty C_n} p0=1+n=0Cn1

因此,已知 λ n , μ n \lambda_n, \mu_n λn,μn,便可求得每个系统状态的概率 p n p_n pn。则系统平均队长和平均排队长分别为
L = ∑ n = 0 ∞ n p n ,   L q = ∑ n = s ∞ ( n − s ) p n L = \sum_{n=0}^\infty np_n, ~L_q = \sum_{n=s}^\infty (n-s)p_n L=n=0npn, Lq=n=s(ns)pn
其中 s s s表示服务台个数。记 λ ∗ = ∑ n = 0 ∞ λ n p n \lambda^* = \sum_{n=0}^\infty\lambda_n p_n λ=n=0λnpn表示系统中顾客的平均到达率,则平均等待时间和平均逗留时间分别为
W = L λ ∗ ,   W q = L q λ ∗ W = \frac{L}{\lambda^*}, ~W_q = \frac{L_q}{\lambda^*} W=λL, Wq=λLq

2 机器维修问题

机器维修问题是指有s个工人同时看管m台机器,当机器发生故障时即停下来等待维修,修好后再投入使用,且仍然可能再发生故障。这是典型的有限源的排队模型。

2.1 负指数分布的运行时间和修复时间

在有限源的条件下,必须考虑每台机器的工作状态。引入如下假设:

假设2

  1. (正常运转时间)每台机器连续正常运转的时间服从参数为 λ \lambda λ的负指数分布,即每台机器平均连续运转时间为 1 λ \frac{1}{\lambda} λ1,一台机器在单位运转时间内发生故障的平均次数为 λ \lambda λ
  2. (修复时间)每台机器的修复时间都服从参数为 μ \mu μ的负指数分布,即工人修理机器的平均时间为 1 μ \frac{1}{\mu} μ1
  3. 每台机器在任何时段内连续运转的时间与工人修复时间彼此独立。

基于假设2,系统的到达率和服务率为
λ n = ( m − n ) λ ,   n = 0 , 1 , 2 , ⋯   , m − 1 μ n = { n μ , n = 1 , 2 , ⋯   , s s μ , n = s + 1 , ⋯   , m \begin{align*} \lambda_n &= (m-n)\lambda, ~n=0,1,2,\cdots, m-1\\ \mu_n &= \begin{cases} n\mu,\quad n=1,2,\cdots, s\\ s\mu, \quad n=s+1,\cdots, m \end{cases} \end{align*} λnμn=(mn)λ, n=0,1,2,,m1={nμ,n=1,2,,ssμ,n=s+1,,m
根据第一节结果可算出稳态概率如下:
p 0 = [ ∑ n = 0 s − 1 m ! ( m − n ) ! n ! ρ n + ∑ n = s m m ! ( m − n ) ! s ! s n − s ρ n ] − 1 p n = { m ! ( m − n ) ! n ! ρ n p 0 , n = 1 , 2 , ⋯   , s m ! ( m − n ) ! s ! s n − s ρ n p 0 , n = s + 1 , ⋯   , m \begin{align*} p_0 &= \left[ \sum_{n=0}^{s-1}\frac{m!}{(m-n)!n!}\rho^n + \sum_{n=s}^m \frac{m!}{(m-n)!s!s^{n-s}}\rho^n \right]^{-1}\\ p_n &= \begin{cases} \frac{m!}{(m-n)!n!}\rho^np_0,\quad n=1,2,\cdots, s\\ \frac{m!}{(m-n)!s!s^{n-s}}\rho^np_0, \quad n=s+1,\cdots, m \end{cases} \end{align*} p0pn=[n=0s1(mn)!n!m!ρn+n=sm(mn)!s!snsm!ρn]1={(mn)!n!m!ρnp0,n=1,2,,s(mn)!s!snsm!ρnp0,n=s+1,,m
其中 ρ = λ μ \rho = \frac{\lambda}{\mu} ρ=μλ。进而可计算平均队长为
L = ∑ n = 0 m n p n L = \sum_{n=0}^m np_n L=n=0mnpn
值得注意的是,这里顾客的平均到达率为
λ e = ∑ n = 0 m ( m − n ) λ p n = λ ( m − L ) \lambda_e = \sum_{n=0}^m (m-n)\lambda p_n = \lambda (m-L) λe=n=0m(mn)λpn=λ(mL)
因此,根据李特尔公式(Little’s law),平均等待队长为
L q = L − λ e μ = L − ρ ( m − L ) L_q = L-\frac{\lambda_e }{\mu} = L-\rho(m-L) Lq=Lμλe=Lρ(mL)

2.2 一般分布的运行时间和负指数分布的修复时间

当运行时间为一般分布时,即 G / M / r G/M/r G/M/r的机器维修问题,Bunday在其《The G/M/r machine interference model》1与《A closed form solution for the G/M/r machine interference model》2论文中证明,当机器的运行时间独立同分布时,稳态概率 p n p_n pn计算结果与 M / M / r M/M/r M/M/r模型的结果相同,仅与这些分布的均值 1 / λ i 1/\lambda_i 1/λi(异构时)有关,说明正常运行时间的分布情况对系统的稳态概率计算没有影响。


  1. https://www.sciencedirect.com/science/article/abs/pii/0377221780901927 ↩︎

  2. https://www.tandfonline.com/doi/epdf/10.1080/00207548808947993?needAccess=true ↩︎

  • 34
    点赞
  • 19
    收藏
    觉得还不错? 一键收藏
  • 1
    评论
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值