生存分析(Survival Analysis)


由于在进行排队论理论分析时时常涉及到生存函数、风险函数的概念,因此在本篇文章记录和梳理一下生存函数的意义,全部使用概率进行理解 1 2

1 生存函数相关概念

用变量 T T T表示个体的生存时间(或机器的正常运转时间),给定一个生存临界时间点 t t t,假设 t t t的概率分布为 f ( t ) f(t) f(t),即概率密度函数(PDF),表示 P ( T = t ) = f ( t ) P(T=t)=f(t) P(T=t)=f(t),其累积分布函数(CDF)为 F ( t ) F(t) F(t),表示 P ( T ≤ t ) = F ( t ) P(T\leq t)=F(t) P(Tt)=F(t),则

  1. 生存函数(Survival Function) S ( t ) = P
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值