图像质量评价学习笔记01:IQA的基本概念及分类

一、什么是图像质量评价IQA?

图像质量评价(也有一部分文献中称为图像质量评估),英文是Image Quality Assessment,简称IQA。图像质量评价是图像处理、图像或视频编码等领域的基础性问题,主要用于评估图像或视频的失真程度,被广泛应用于算法设计与分析、系统性能评估等方面。

在人眼接收图像视觉信息之前,多媒体数据通常需要经过整个信息处理链,在不同的处理阶段会经历各种感知质量退化。在采集过程中可能因设备的抖动造成失焦、模糊,压缩时产生块效应、振铃效应等,传输中产生时间延迟、误码、数据丢包,重建过程中有噪声等,造成最后显示给观看者的图像是退化的。通过计算机模型得出图像质量评价结果,最终目的是无限接近于人类的主观感受。

数据处理链示意图如下:
在这里插入图片描述

二、图像质量评价IQA具体应用在哪里?

针对上面的数据传输链,图像质量评价的具体应用:
1、采集:使用质量评价技术来监测和自动调整采集参数,这样可以采集到质量较好的图像数据。举例:通过摄像头获得病理的实时采集图像,判断图像的内容质量,输出判断结果,对于明显质量不合格的病理图像直接定义为不合格图像,提高质控环节的工作效率。
2、压缩:在满足图像质量要求的情况下

目 录 第一章 引言 1 1.1 图像质量评价的定义 1 1.2 研究对象 1 1.3 方法分类 2 1.4 研究意义 3 第二章 历史发展和研究现状 4 2.1 基于手工特征提取的图像质量评价 4 2.1.1 基于可视误差的“自底向上”模型 4 2.1.1.1 Daly模型 4 2.1.1.2 Watson’s DCT模型 5 2.1.1.3 存在的问题 5 2.1.2 基于HVS的“自顶向下”模型 5 2.1.2.1 结构相似性方法 6 2.1.2.2 信息论方法 8 2.1.2.3 存在的问题 9 2.2 基于深度学习的图像质量评价 10 2.2.1 CNN模型 10 2.2.2 多任务CNN模型 12 2.2.3 研究重点 15 第三章 图像质量评价数据集和性能指标 16 3.1 图像质量评价数据集简介 16 3.2 图像质量评价模型性能指标 17 第四章 总结与展望 19 4.1 归纳总结 19 4.2 未来展望 19 参考文献 21 第一章 引言 随着现代科技的发展,诸如智能手机,平板电脑和数码相机之类的消费电子产品快速普及,已经产生了大量的数字图像。作为一种更自然的交流方式,图像中的信息相较于文本更加丰富。信息化时代的到来使图像实现了无障碍传输,图像在现代社会工商业的应用越来越广泛和深入,是人们生活中最基本的信息传播手段,也是机器学习的重要信息源。 图像质量是图像系统的核心价值,此外,它也是图像系统技术水平的最高层次。但是,对图像的有损压缩、采集和传输等过程会很容易导致图像质量下降的问题。例如:在拍摄图像过程中,机械系统的抖动、光学系统的聚焦模糊以及电子系统的热噪声等都会造成图像不够清晰;在图像存储和传输过程中,由于庞大的数据量和有限通讯带宽的矛盾,图像需要进行有损压缩编码,这也会导致振铃效应、模糊效应和块效应等图像退化现象的出现。所以,可以说图像降质在图像系统的各个层面都会很频繁地出现,对图像质量作出相应的客观评价是十分重要且有意义的。为了满足用户在各种应用中对图像质量的要求,也便于开发者们维持、控制和强化图像质量图像质量评价(Image Quality Assessment,IQA)是一种对图像所受到的质量退化进行辨识和量化的
评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值