图像质量评价(IQA)的传统方法归纳总结

本文详细介绍了图像质量客观评价的三种类型:全参考、部分参考和无参考。全参考方法依赖理想图像,常用PSNR、MSE、SSIM等;部分参考方法参考部分图像特征,如PIQE和BRISQUE;无参考方法如NIQE仅依据图像统计特性,无需理想图像。各种方法各有优势,适用于不同应用场景。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

图像质量客观评价IQA可分为全参考(Full-Reference,FR),部分参考(Reduced-Reference,RR)无参考(No-Reference,NR)三种类型。

一、全参考(Full-Reference,FR)

全参考图像质量评价是指在选择理想图像作为参考图像的情况下,比较待评图像与参考图像之间的差异,分析待评图像的失真程度,从而得到待评图像的质量评估。常用的全参考图像质量客观评价主要以像素统计、信息论、结构信息三方面为基础。

1. 基于图像像素统计基础

基于图像像素统计基础,峰值信噪比(Peak-Signal to Noise Ratio,PSNR)和均方误差(Mean Square Error,MSE),还有MAE(Mean Absolute Error,MAE)和信噪比SNR(Signal to Noise Ratio),是比较常见的几种质量评价方法。它们通过算待评测图像和参考图像对应像素点灰度值之间的差异,从统计角度来衡量待评图像的质量优劣。

(1)均方误差(Mean-Square Error, MSE)

MSE简写为以下,就是两幅图像的所有的像素值的差的平方和,再求平均值,最终得到的是一个数值。

目 录 第一章 引言 1 1.1 图像质量评价的定义 1 1.2 研究对象 1 1.3 方法分类 2 1.4 研究意义 3 第二章 历史发展和研究现状 4 2.1 基于手工特征提取的图像质量评价 4 2.1.1 基于可视误差的“自底向上”模型 4 2.1.1.1 Daly模型 4 2.1.1.2 Watson’s DCT模型 5 2.1.1.3 存在的问题 5 2.1.2 基于HVS的“自顶向下”模型 5 2.1.2.1 结构相似性方法 6 2.1.2.2 信息论方法 8 2.1.2.3 存在的问题 9 2.2 基于深度学习图像质量评价 10 2.2.1 CNN模型 10 2.2.2 多任务CNN模型 12 2.2.3 研究重点 15 第三章 图像质量评价数据集和性能指标 16 3.1 图像质量评价数据集简介 16 3.2 图像质量评价模型性能指标 17 第四章 总结与展望 19 4.1 归纳总结 19 4.2 未来展望 19 参考文献 21 第一章 引言 随着现代科技的发展,诸如智能手机,平板电脑和数码相机之类的消费电子产品快速普及,已经产生了大量的数字图像。作为一种更自然的交流方式,图像中的信息相较于文本更加丰富。信息化时代的到来使图像实现了无障碍传输,图像在现代社会工商业的应用越来越广泛和深入,是人们生活中最基本的信息传播手段,也是机器学习的重要信息源。 图像质量是图像系统的核心价值,此外,它也是图像系统技术水平的最高层次。但是,对图像的有损压缩、采集和传输等过程会很容易导致图像质量下降的问题。例如:在拍摄图像过程中,机械系统的抖动、光学系统的聚焦模糊以及电子系统的热噪声等都会造成图像不够清晰;在图像存储和传输过程中,由于庞大的数据量和有限通讯带宽的矛盾,图像需要进行有损压缩编码,这也会导致振铃效应、模糊效应和块效应等图像退化现象的出现。所以,可以说图像降质在图像系统的各个层面都会很频繁地出现,对图像质量作出相应的客观评价是十分重要且有意义的。为了满足用户在各种应用中对图像质量的要求,也便于开发者们维持、控制和强化图像质量图像质量评价(Image Quality Assessment,IQA)是一种对图像所受到的质量退化进行辨识和量化的
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值