6 总体与样本

6.1 总体与样本

  • 在数理统计中,我们将所研究的对象的全体称为总体,而将总体中的每个成员称为个体
  • 总体中所包含的个体的数量称为样本的容量,如果一个总体所包含的个体数量是有限的,则称之为有限总体。如果总体所包含的个体数量是无限的,则称之为无限总体
  • 样本:被抽取的部分个体
  • 简单随机样本
    • 随机样本 ( X 1 , X 2 , … , X n ) (X_1,X_2,…,X_n) (X1,X2,Xn)中,每个 X i X_i Xi X n X_n Xn是相互独立的随机变量
    • 这些样本和总体 X X X同分布
  • 获得简单随机样本
    • 简单随机抽样
    • 对于有限个体采用放回抽样
    • 对于无限总体(或很大的总体)采用不放回抽样

6.2 统计量与抽样分布

一 、统计量

定义 ( X 1 , X 2 , … , X n ) (X_1, X_2, \dots, X_n) (X1,X2,,Xn)为来自总体 X X X的一个样本, g ( x 1 , x 2 , … , x n ) g(x_1, x_2, \dots, x_n) g(x1,x2,,xn) X 1 , X 2 , … , X n X_1, X_2, \dots, X_n X1,X2,,Xn的函数,若 g g g中不含位置参数,则称 g ( X 1 , X 2 , … , X n ) g(X_1, X_2, \dots, X_n) g(X1,X2,,Xn)是一统计量

常用统计量:

  • 样本平均值:
    X ‾ = 1 n ∑ i = 1 n X i \overline X = \dfrac{1}{n} \sum_{i=1}^{n} X_i X=n1i=1nXi

  • 样本方差:
    S 2 = 1 n − 1 ∑ i = 1 n ( X i − X ‾ ) S^2= \dfrac{1}{n-1} \sum_{i=1}^{n}(X_i - \overline X) S2=n11i=1n(XiX)

  • 样本标准差:
    S = 1 n − 1 ∑ i = 1 n ( X i − X ‾ ) S=\sqrt{\frac{1}{n-1} \sum_{i=1}^{n}(X_i-\overline{X})} S=n11i=1n(XiX)

  • 样本 k k k阶原点矩:
    A k = 1 n ∑ i = 1 n X i k , k = 1 , 2 , 3 , … A_k=\frac{1}{n} \sum_{i=1}^{n} X_i^k, \quad k=1,2,3,\dots Ak=n1i=1nXikk=1,2,3,

  • 样本 k k k阶中心矩:
    B k = 1 n ∑ i = 1 n ( X i − X ‾ ) k , k = 1 , 2 , 3 , … B_k=\frac{1}{n}\sum_{i=1}^{n}(X_i-\overline X)^k,\quad k=1,2,3,\dots Bk=n1i=1n(XiX)k,k=1,2,3,

在一次具体的观察中,统计量是具体的数值;但脱离具体的观察或试验,统计量应看作随机变量。

统计量的分布称为抽样分布

二 、正态总体的常用统计量的分布

( 一 ) χ 2 \chi^2 χ2分布

定义 X 1 , X 2 , … , X n X_1, X_2, \dots, X_n X1,X2,,Xn为独立同分布的随机变量,均服从 N ( 0 , 1 ) N(0, 1) N(0,1),则称随机变量
χ 2 = ∑ i = 1 n X i 2 \chi^2 = \sum_{i=1}^{n} X_i^2 χ2=i=1nXi2
为服从自由度为n χ 2 \chi^2 χ2分布,记为 χ 2 ∼ χ 2 ( n ) \chi^2 \sim \chi^2(n) χ2χ2(n).

自由度:独立变量的个数

概率密度不重要
f ( y ) = { 1 2 n 2 Γ ( n 2 ) y n 2 − 1 e − y 2 y>0 0 其他 f(y)= \begin{cases} \dfrac{1}{2^{\frac n2 \Gamma(\frac n2)}} y^{\frac {n}{2}-1}e^{-{\frac y2}} & \text{y>0}\\ 0& \text{其他} \end{cases} f(y)=22nΓ(2n)1y2n1e2y0y>0其他
其中,
Γ ( α ) = ∫ 0 + ∞ x α − 1 e − x d x Γ ( n ) = ( n − 1 ) ! \Gamma(\alpha)=\int_{0}^{+\infty}x^{\alpha-1}e^{-x}dx \\ \Gamma(n)=(n-1)! Γ(α)=0+xα1exdxΓ(n)=(n1)!
性质:

  • χ 2 \chi^2 χ2分布的可加性 χ 1 2 ∼ χ 2 ( n 1 ) , χ 2 2 ∼ χ 2 ( n 2 ) \chi_1^2 \sim \chi^2(n_1),\chi_2^2 \sim \chi^2(n_2) χ12χ2(n1)χ22χ2(n2),并且 χ 1 2 \chi_1^2 χ12 χ 2 2 \chi_2^2 χ22相互独立,则有
    χ 1 2 + χ 2 2 ∼ χ 2 ( n 1 + n 2 ) \chi_1^2 + \chi_2^2 \sim \chi^2(n_1 + n_2) χ12+χ22χ2(n1+n2)

  • χ 2 \chi^2 χ2分布的期望和方差 χ 2 ∼ χ 2 ( n ) \chi^2 \sim \chi^2(n) χ2χ2(n),则有
    E ( χ 2 ) = n , D ( χ 2 ) = 2 n E(\chi^2)=n,\quad D(\chi^2)=2n E(χ2)=n,D(χ2)=2n

χ 2 \chi^2 χ2分布的上分位点 对于给定的正数 α \alpha α, 0 < α < 1 0<\alpha<1 0<α<1, 满足条件
P { χ 2 > χ α 2 ( n ) } = ∫ 0 ∞ f ( y ) d y = α P\{ \chi^2>\chi^2_\alpha(n) \}=\int_0^{\infty}f(y)dy=\alpha P{χ2>χα2(n)}=0f(y)dy=α
的点 χ α 2 ( n ) \chi_\alpha^2(n) χα2(n)就是 χ 2 ( n ) \chi_2(n) χ2(n)分布的上 α \alpha α分位点。

(二)t 分布

定义 X ∼ N ( 0 , 1 ) , Y ∼ χ 2 ( n ) X\sim N(0, 1),Y \sim \chi^2(n) XN(0,1)Yχ2(n),且XY相互独立,则称随机变量
T = X Y / n T = \dfrac{X}{\sqrt{Y/n}} T=Y/n X
为服从自由度nt 分布,记为 T ∼ t ( n ) T \sim t(n) Tt(n).

概率密度函数
h ( t ) = Γ [ ( n + 1 ) / 2 ] π n Γ ( n / 2 ) ( 1 + t 2 n ) − ( n + 1 ) / 2 h(t)=\dfrac{\Gamma[(n+1)/2]}{\sqrt{\pi n}\Gamma(n/2)}(1+\frac{t^2}{n})^{-(n+1)/2} h(t)=πn Γ(n/2)Γ[(n+1)/2](1+nt2)(n+1)/2
n → + ∞ n \rightarrow +\infty n+时,
lim ⁡ n → + ∞ h ( 1 ) = 1 2 π e − t 2 / 2 \displaystyle \lim_{n \rightarrow +\infty} h(1)=\frac{1}{\sqrt{2\pi}}e^{-t^2/2} n+limh(1)=2π 1et2/2
故当n足够大时,t 分布近似于 N ( 0 , 1 ) N(0,1) N(0,1)分布。

t 分布的上分位点 对于给定的 α \alpha α, 0 < α < 1 0<\alpha<1 0<α<1, 满足条件
P { t > t α ( n ) } = ∫ t α ∞ h ( t ) d t = α P\{ t>t_\alpha(n)\}=\int_{t_\alpha}^\infty h(t) dt=\alpha P{t>tα(n)}=tαh(t)dt=α
的点 t α ( n ) t_\alpha(n) tα(n)就是 t ( n ) t(n) t(n)分布的上 α \alpha α分位点。
t 1 − α ( n ) = − t α ( n ) t_{1-\alpha}(n)=-t_\alpha(n) t1α(n)=tα(n)

(三)F 分布

定义 U ∼ χ 2 ( n 1 ) , V ∼ χ 2 ( n 2 ) U \sim \chi^2(n_1),V \sim \chi^2(n_2) Uχ2(n1)Vχ2(n2),且UV相互独立,则称随机变量
F = U / n 1 V / n 2 F = \dfrac{U/n_1}{V/n_2} F=V/n2U/n1
服从自由度为 ( n 1 , n 2 ) (n_1, n_2) (n1,n2)F分布,记为 F ∼ F ( n 1 , n 2 ) F \sim F(n_1, n_2) FF(n1,n2).

概率密度函数 :
ψ ( y ) = { Γ [ ( n 1 + n 2 ) / 2 ] ( n 1 / n 2 ) n 1 / 2 y ( n 1 / 2 ) − 1 Γ ( n 1 / 2 ) Γ ( n 2 / 2 ) [ 1 + ( n 1 y / n 2 ) ] ( n 1 + n 2 ) / 2 y>0 0 其他 \psi(y)= \begin{cases} \dfrac{\Gamma[(n_1+n_2)/2](n_1/n_2)^{n_1/2}y^{(n_1/2)-1}}{\Gamma(n_1/2)\Gamma(n_2/2)[1+(n_1y/n_2)]^{(n_1+n_2)/2}} & \text{y>0}\\ 0& \text{其他} \end{cases} ψ(y)=Γ(n1/2)Γ(n2/2)[1+(n1y/n2)](n1+n2)/2Γ[(n1+n2)/2](n1/n2)n1/2y(n1/2)10y>0其他
性质

  • F ∼ F ( n 1 , n 2 ) F \sim F(n_1, n_2) FF(n1,n2),则 1 F ∼ F ( n 2 , n 1 ) \dfrac{1}{F} \sim F(n_2, n_1) F1F(n2,n1).
  • T ∼ t ( n ) T \sim t(n) Tt(n),则 T 2 ∼ F ( 1 , n ) T^2 \sim F(1, n) T2F(1,n)

F 分布的上分位点 对于给定的 α \alpha α, 0 < α < 1 0<\alpha<1 0<α<1, 满足条件
P { F > F α ( n 1 , n 2 ) } = ∫ F α ( n 1 , n 2 ) ∞ ψ ( y ) d y = α P\{ F>F_\alpha(n_1,n_2)\}=\int_{F_\alpha(n_1,n_2)}^\infty \psi(y) dy=\alpha P{F>Fα(n1,n2)}=Fα(n1,n2)ψ(y)dy=α
的点 F α ( n 1 , n 2 ) F_\alpha(n_1,n_2) Fα(n1,n2)就是 F ( n 1 , n 2 ) F(n_1,n_2) F(n1,n2)分布的上 α \alpha α分位点。

三 、正态总体的样本均值与样本方差的分布

定理一二三 X 1 , X 2 , … , X n X_1,X_2,\dots, X_n X1,X2,,Xn是来自正态总体 N ( μ , σ 2 ) N(\mu, \sigma^2) N(μ,σ2)的样本,则

  • X ˉ ∼ N ( μ , σ 2 n ) \bar{X} \sim N(\mu, \dfrac{\sigma^2}{n}) XˉN(μ,nσ2)
  • ( n − 1 ) S 2 σ 2 ∼ χ 2 ( n − 1 ) \dfrac{(n-1)S^2}{\sigma^2} \sim \chi^2(n-1) σ2(n1)S2χ2(n1)
  • X ˉ \bar{X} Xˉ S 2 S^2 S2相互独立;
  • $\dfrac{\bar{X} - \mu}{S/\sqrt n} \sim t(n-1) $

定理四 X 1 , X 2 , … , X n X_1,X_2,\dots, X_n X1,X2,,Xn Y 1 , Y 2 , … , Y n Y_1,Y_2,\dots,Y_n Y1,Y2,,Yn分别是来自正态总体 N ( μ 1 , σ 1 2 ) N(\mu_1,\sigma_1^2) N(μ1,σ12) N ( μ 2 , σ 2 2 ) N(\mu_2, \sigma_2^2) N(μ2,σ22)的样本,且两样本相互独立。记 X ˉ = 1 n 1 ∑ i = 1 n 1 \bar{X}=\dfrac{1}{n_1} \displaystyle\sum_{i=1}^{n_1} Xˉ=n11i=1n1 Y ˉ = 1 n 2 ∑ i = 1 n 2 \bar{Y}=\dfrac{1}{n_2} \displaystyle\sum_{i=1}^{n_2} Yˉ=n21i=1n2分别为它们的样本均值; S 1 2 = 1 n 1 − 1 ∑ i = 1 n 1 ( X i − X ˉ ) 2 S_1^2=\dfrac{1}{n_1-1} \displaystyle\sum_{i=1}^{n_1}({X_i-\bar{X})^2} S12=n111i=1n1(XiXˉ)2, S 2 2 = 1 n 2 − 1 ∑ i = 1 n 2 ( Y i − Y ˉ ) 2 S_2^2=\dfrac{1}{n_2-1} \displaystyle\sum_{i=1}^{n_2}({Y_i-\bar{Y})^2} S22=n211i=1n2(YiYˉ)2分别为它们的样本方差,则有

  • S 1 2 / S 2 2 σ 1 2 / σ 2 2 = F ( n 1 − 1 , n 2 − 1 ) \dfrac{S_1^2/S_2^2}{\sigma_1^2/\sigma_2^2}=F(n_1-1,n_2-1) σ12/σ22S12/S22=F(n11,n21)

  • σ 1 2 = σ 2 2 = σ 3 2 \sigma_1^2=\sigma_2^2=\sigma_3^2 σ12=σ22=σ32时,
    ( X ˉ − Y ˉ ) − ( μ 1 − μ 2 ) S w 1 n 1 + 1 n 2 ∼ t ( n 1 + n 2 − 2 ) \dfrac{(\bar{X}-\bar{Y})-(\mu_1-\mu_2)}{S_w \sqrt{\frac{1}{n_1}+\frac{1}{n_2}}} \sim t(n_1+n_2-2) Swn11+n21 (XˉYˉ)(μ1μ2)t(n1+n22)
    其中,
    S w 2 = ( n 1 − 1 ) S 1 2 + ( n 2 − 1 ) S 2 2 n 1 + n 2 − 2 , S w = S w 2 S_w^2=\dfrac{(n_1-1)S_1^2+(n_2-1)S_2^2}{n_1+n_2-2},\quad S_w=\sqrt{S_w^2} Sw2=n1+n22(n11)S12+(n21)S22,Sw=Sw2

  • 1
    点赞
  • 5
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值