7 参数估计

参数:反应总体某方面特征的量(比如:合格率、均值、方差、中位数…

参数估计的形式:点估计和区间估计

7.1 点估计

借助于总体X的一个样本来估计总体未知参数的值的问题称为参数的点估计问题。

设总体的分布函数为 F ( x ; θ ) F(x; \theta) F(x;θ),其中 θ \theta θ为k维向量。根据样本 X 1 , X 2 , … , X n X_1, X_2, \dots, X_n X1,X2,,Xn构造一个统计量 θ ^ ( X 1 , X 2 , … , X n ) \hat{\theta}(X_1, X_2, \dots, X_n) θ^(X1,X2,,Xn)作为 θ \theta θ的估计,则称 θ ^ ( X 1 , X 2 , … , X n ) \hat{\theta}(X_1, X_2, \dots, X_n) θ^(X1,X2,,Xn) θ \theta θ估计量。如果 x 1 , x 2 , … , x n x_1, x_2, \dots, x_n x1,x2,,xn是一个样本观察值,带入 θ ^ \hat{\theta} θ^后得到的具体值 θ ^ ( x 1 , x 2 , … , x n ) \hat{\theta}(x_1, x_2, \dots, x_n) θ^(x1,x2,,xn)称为 θ \theta θ估计值

常用的点估计方法:矩估计法、极大似然估计法。

一 、矩估计法

统计思想:以样本矩估计总体矩,以样本矩的函数估计总体矩的函数。

理论依据:辛钦大数定律和依概率收敛的性质。

θ 1 , θ 2 , … , θ k \theta_1,\theta_2,\dots,\theta_k θ1,θ2,,θk为待估参数, X 1 , X 2 , … , X n X_1,X_2,\dots,X_n X1,X2,,Xn是来自X的样本。矩估计的具体步骤:

  1. 建立 ( θ 1 , θ 2 , … , θ k ) (\theta_1,\theta_2,\dots,\theta_k) (θ1,θ2,,θk) ( μ 1 , μ 2 , … , μ k ) (\mu_1,\mu_2,\dots,\mu_k) (μ1,μ2,,μk)的联系:求总体前k阶矩关于k个参数的函数
    μ i = E ( X i ) = h i ( θ 1 , θ 2 , … , θ k ) , i = 1 , 2 , … , k . \mu_i=E(X^i)=h_i(\theta_1,\theta_2,\dots,\theta_k),\quad i=1,2,\dots,k. μi=E(Xi)=hi(θ1,θ2,,θk),i=1,2,,k.

  2. 求各参数关于k阶矩的反函数
    θ i = g i ( μ 1 , μ 2 , … , μ k ) , i = 1 , 2 , … , k \theta_i=g_i(\mu_1,\mu_2,\dots,\mu_k),\quad i=1,2,\dots,k θi=gi(μ1,μ2,,μk),i=1,2,,k

  3. 以样本各阶矩 A 1 , A 2 , … , A k A_1,A_2,\dots,A_k A1,A2,,Ak代替总体X各阶矩 μ 1 , μ 2 , … , μ k \mu_1,\mu_2,\dots,\mu_k μ1,μ2,,μk, 得到各参数的矩估计
    θ ^ i = g i ( A 1 , A 2 , … , A k ) , i = 1 , 2 , … , k \hat\theta_i=g_i(A_1,A_2,\dots,A_k),\quad i=1,2,\dots,k θ^i=gi(A1,A2,,Ak),i=1,2,,k

【注】:方差 σ 2 \sigma^2 σ2的矩估计并不是(修正)样本方差 S 2 S^2 S2,而是样本二阶中心距
B 2 = 1 n ∑ i = 1 n ( X i − X ˉ ) 2 = n − 1 n S 2 B_2 = \dfrac{1}{n} \sum\limits_{i=1}^n (X_i - \bar{X})^2 = \dfrac{n-1}{n}S^2 B2=n1i=1n(XiXˉ)2=nn1S2
矩估计的特点:

  • 直观、简便
  • 适用范围广,不需要知道总体分布的具体类型
  • 没有充分利用总体分布的信息,精度不高

二 、最大似然估计法

离散型总体 X ∼ p ( x ; θ ) , θ ∈ Θ X \sim p(x;\theta),\theta \in \Theta Xp(x;θ),θΘ, θ \theta θ为待估参数, Θ \Theta Θ为参数的取值范围。 X 1 , X 2 , … , X n X_1,X_2,\dots, X_n X1,X2,,Xn是来自总体X的样本,则 X 1 , X 2 , … , X n X_1, X_2, \dots, X_n X1,X2,,Xn的联合分布率为
∏ i = 1 n p ( x i ; θ ) \prod_{i=1}^{n}p(x_i;\theta) i=1np(xi;θ)
又设 ( x 1 , x 2 , … , x n ) (x_1, x_2, \dots, x_n) (x1,x2,,xn)是相应于样本的一组观察值,那么样本 X 1 , X 2 , … , X n X_1, X_2, \dots, X_n X1,X2,,Xn取到观察值的概率为
L ( θ ) = L ( x 1 , x 2 , … , x n ; θ ) = ∏ i = 1 n p ( x i ; θ ) , θ ∈ Θ L(\theta)=L(x_1,x_2,\dots,x_n;\theta)=\prod_{i=1}^{n}p(x_i;\theta), \quad \theta \in \Theta L(θ)=L(x1,x2,,xn;θ)=i=1np(xi;θ),θΘ
L ( θ ) L(\theta) L(θ)称为样本的似然函数

最大似然估计法就是固定样本的观察值 x 1 , x 2 , … , x n x_1, x_2, \dots, x_n x1,x2,,xn,在 θ \theta θ取值的可能范围 Θ \Theta Θ内挑选使得最大似然函数 L ( θ ) = L ( x 1 , x 2 , … , x n ; θ ) L(\theta)=L(x_1,x_2,\dots,x_n;\theta) L(θ)=L(x1,x2,,xn;θ)达到最大值的参数值 θ ^ \hat\theta θ^作为参数 θ \theta θ的估计值,即取 θ ^ \hat\theta θ^使
L ( x 1 , x 2 , … , x n ; θ ^ ) = max ⁡ θ ∈ Θ L ( x 1 , x 2 , … , x n ; θ ) L(x_1,x_2,\dots,x_n;\hat\theta)=\displaystyle\max_{\theta \in \Theta} L(x_1,x_2,\dots,x_n;\theta) L(x1,x2,,xn;θ^)=θΘmaxL(x1,x2,,xn;θ)

这样得到的 θ ^ \hat\theta θ^值与 x 1 , x 2 , … , x n x_1,x_2,\dots,x_n x1,x2,,xn有关,常记为 θ ^ ( x 1 , x 2 , … , x n ) \hat\theta(x_1,x_2,\dots,x_n) θ^(x1,x2,,xn) ,称为参数 θ \theta θ最大似然估计值,相应的统计量 θ ^ ( X 1 , X 2 , … , X n ) \hat\theta(X_1,X_2,\dots,X_n) θ^(X1,X2,,Xn) 称为参数 θ \theta θ最大似然估计量

连续型总体的概率密度 f ( x i ; θ ) , θ ∈ Θ f(x_i; \theta), \theta \in \Theta f(xi;θ),θΘ θ \theta θ为待估参数, Θ \Theta Θ为参数的取值范围。 X 1 , X 2 , … , X n X_1,X_2,\dots, X_n X1,X2,,Xn是来自总体X的样本,则 X 1 , X 2 , … , X n X_1, X_2, \dots, X_n X1,X2,,Xn的概率密度函数为
∏ i = 1 n p ( x i ; θ ) \prod_{i=1}^{n} p(x_i; \theta) i=1np(xi;θ)
又设 x 1 , x 2 , … , x n x_1, x_2, \dots, x_n x1,x2,,xn是样本的一组观察值,那么样本 ( X 1 , X 2 , … , X n ) (X_1, X_2, \dots, X_n) (X1,X2,,Xn)落在 x 1 , x 2 , … , x n x_1, x_2, \dots, x_n x1,x2,,xn的领域内的概率近似为
∏ i = 1 n p ( x i ; θ ) d x i \prod_{i=1}^n p(x_i; \theta) dx_i i=1np(xi;θ)dxi
因子 ∏ i = 1 n d x i \displaystyle\prod_{i=1}^{n}dx_i i=1ndxi与参数 θ \theta θ无关, 所以似然函数
L ( θ ) = L ( x 1 , x 2 , … , x n ; θ ) = ∏ i = 1 n f ( x i ; n ) L(\theta)=L(x_1, x_2, \dots, x_n;\theta)=\prod_{i=1}^n f(x_i;n) L(θ)=L(x1,x2,,xn;θ)=i=1nf(xi;n)
满足下式
L ( x 1 , x 2 , … , x n ; θ ^ ) = max ⁡ θ ∈ Θ L ( x 1 , x 2 , … , x n ; θ ) L(x_1, x_2, \dots, x_n;\hat\theta)=\max_{\theta \in \Theta} L(x_1, x_2, \dots, x_n;\theta) L(x1,x2,,xn;θ^)=θΘmaxL(x1,x2,,xn;θ)
θ ^ ( x 1 , x 2 , … , x n ) \hat\theta(x_1,x_2,\dots,x_n) θ^(x1,x2,,xn)称为 θ \theta θ最大似然_估计值 θ ^ ( X 1 , X 2 , … , X n ) \hat\theta(X_1,X_2,\dots,X_n) θ^(X1,X2,,Xn)称为最大似然估计量

【说明】:

  • 很多情形下, p ( x i ; θ ) p(x_i;\theta) p(xi;θ) f ( x ; θ ) f(x;\theta) f(x;θ)关于 θ \theta θ可微, θ \theta θ可从以下方程中解得
    d d θ L ( θ ) = 0 \frac{d}{d\theta}L(\theta)=0 dθdL(θ)=0

  • 对数似然函数 : l n L ( θ ) lnL(\theta) lnL(θ)

  • 对数似然方程组
    ∂ L ( θ ) ∂ θ = ∑ i = 1 n ∂ ln ⁡ p ( x i ; θ ) ∂ θ = 0 \dfrac{\partial L(\theta)}{\partial \theta} = \sum\limits_{i=1}^n \dfrac{\partial \ln p(x_i; \theta)}{\partial \theta} = 0 θL(θ)=i=1nθlnp(xi;θ)=0

7.3 估计量的评选标准

一 、无偏性

定义 θ ^ = θ ^ ( X 1 , X 2 , … , X n ) \hat\theta=\hat{\theta}(X_1, X_2, \dots, X_n) θ^=θ^(X1,X2,,Xn)为参数 θ \theta θ的一个估计量, Θ \Theta Θ为参数 θ \theta θ的取值范围,若对任意的 θ ∈ Θ \theta \in \Theta θΘ, 有
E ( θ ^ ) = θ E(\hat{\theta}) = \theta E(θ^)=θ
则称 θ ^ \hat\theta θ^ θ \theta θ无偏估计量

E ( θ ^ ) ≠ 0 E(\hat\theta) \neq 0 E(θ^)=0, 那么 ∣ E ( θ ^ ) − θ ∣ |E(\hat\theta)-\theta| E(θ^)θ称为估计量 θ ^ \hat\theta θ^偏差

lim ⁡ n → ∞ E ( θ ) = θ \displaystyle\lim_{n \rightarrow \infty}E(\theta)=\theta nlimE(θ)=θ,则称 θ ^ \hat\theta θ^ θ \theta θ渐进无偏估计量

例: 样本均值 X ˉ \bar X Xˉ是总体均值 μ \mu μ的无偏估计,样本方差 S 2 = 1 n − 1 ∑ i = 1 n ( X i − X ˉ ) 2 S_2=\dfrac{1}{n-1}\displaystyle\sum_{i=1}^{n}(X_i-\bar X)^2 S2=n11i=1n(XiXˉ)2是总体方差 σ 2 \sigma^2 σ2的无偏估计,而样本二阶中心矩 B 2 = 1 n ∑ i = 1 n ( X i − X ˉ ) 2 = n − 1 n S 2 B_2=\dfrac{1}{n}\displaystyle\sum_{i=1}^{n}(X_i-\bar X)^2=\dfrac{n-1}{n}S^2 B2=n1i=1n(XiXˉ)2=nn1S2不是总体方差 σ 2 \sigma^2 σ2的无偏估计,但有 lim ⁡ n → ∞ E ( B 2 ) = lim ⁡ n → ∞ n − 1 n σ 2 = σ 2 \displaystyle\lim_{n \rightarrow \infty}E(B_2)=\lim_{n \rightarrow \infty}\frac{n-1}{n}\sigma^2=\sigma^2 nlimE(B2)=nlimnn1σ2=σ2,所以 B 2 B_2 B2 σ 2 \sigma^2 σ2的渐进无偏估计。

纠偏方法:如果 E ( θ ^ ) = a θ + b , θ ∈ Θ E(\hat\theta)=a\theta+b,\theta \in \Theta E(θ^)=aθ+bθΘ其中 a , b a,b a,b是常数,且 a ≠ 0 a \ne 0 a=0,则 1 a ( θ ^ − b ) \dfrac{1}{a}(\hat\theta-b) a1(θ^b) θ \theta θ的无偏估计。

二 、有效性

定义 θ ^ 1 = θ ^ 1 ( X 1 , X 2 , … , X n ) \hat\theta_1=\hat\theta_1(X_1,X_2,\dots,X_n) θ^1=θ^1(X1,X2,,Xn) θ ^ 2 = θ ^ 2 ( X 1 , X 2 , … , X n ) \hat\theta_2=\hat\theta_2(X_1,X_2,\dots,X_n) θ^2=θ^2(X1,X2,,Xn)都是 θ \theta θ的无偏估计量,若对于任意的 θ ∈ Θ \theta \in \Theta θΘ,有
D ( θ ^ 1 ) ≤ D ( θ ^ 2 ) D(\hat\theta_1) \leq D(\hat\theta_2) D(θ^1)D(θ^2)
且至少对于某一个 θ ∈ Θ \theta \in \Theta θΘ上式中的不等号成立,则称 θ ^ 1 \hat\theta_1 θ^1 θ ^ 2 \hat\theta_2 θ^2有效

三 、均方误差准则

定义 E ( θ ^ − θ ) 2 E(\hat{\theta} - \theta)^2 E(θ^θ)2均方误差,记为M(\hat{\theta}, \theta)M(θ^,θ)。显然,均方误差越小越好,这一准则称为均方误差准则

均方误差可以分为两部分:
M ( θ ^ , θ ) = D ( θ ^ ) + ( E ( θ ^ ) − θ ) 2 M(\hat{\theta}, \theta) = D(\hat{\theta}) + (E(\hat{\theta}) - \theta)^2 M(θ^,θ)=D(θ^)+(E(θ^)θ)2
如果估计量是无偏估计,那么第二部分为0,均方误差变为方差。

四 、相合性

定义 θ ^ ( X 1 , X 2 , … , X n ) \hat{\theta}(X_1, X_2, \dots, X_n) θ^(X1,X2,,Xn)为参数 θ \theta θ的一个估计量, Θ \Theta Θ若对任意的 θ ∈ Θ \theta \in \Theta θΘ, 当 n → ∞ n \rightarrow \infty n时, θ ^ ( X 1 , X 2 , … , X n ) \hat\theta(X_1,X_2,\dots, X_n) θ^(X1,X2,,Xn)依概率收敛于 θ \theta θ,则称 θ ^ \hat\theta θ^ θ \theta θ相合性估计量

即,若对于任意 θ ∈ Θ \theta \in \Theta θΘ都满足:对于任意 ε > 0 \varepsilon > 0 ε>0,有
lim ⁡ n → ∞ { ∣ θ ^ − θ ∣ < ε } = 1 \lim_{n\rightarrow\infty}\{ |\hat\theta-\theta|<\varepsilon \}=1 nlim{θ^θ<ε}=1
则称 θ ^ \hat\theta θ^ θ \theta θ相合性估计量

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值