GPU之CUDA&cuDNN&Tensorflow版本匹配

1 小序(Level 1)

1.0 CUDA

摘自:百度百科
C U D A T M CUDA^{TM} CUDATM (Compute Unified Device Architecture,统一计算设备架构),是NVIDIA(英伟达)推出的并行计算架构,该架构使GPU能够解决复杂的计算问题.CUDA包含指令集架构(ISA)以及GPU内部的并行计算引擎. C U D A T M CUDA^{TM} CUDATM架构可用C开发,CUDA3.0支持C++及FORTRAN.

1.2 cuDNN

摘自:NVIDIA官网
cuDNN(CUDA Deep Nerual Network,统一计算设备架构深度神经网络)是一个GPU加速的深度神经网络基元库.cuDNN为标准例程提供了高度优化的实现,如前向和反向卷积,池化,标准化和激活层.
全世界深度学习研究员和框架开发人员都依赖cuDNN实现高性能GPU加速.这帮助他们将精力集中在训练神经网络和开发软件上,而不是在低级的GPU性能调优上.
cuDNN加速了广泛使用的深度学习框架,如Caffe,Caffe2,Chainer,Kears,MatLab,MxNet,Tensorflow和PyTorch.

2 查看版本

2.1 查看CUDA版本

  • 查询
cat /usr/local/cuda/version.txt
  • 结果
CUDA Version 8.0.61
CUDA Patch Version 8.0.61.2

2.2 cuDNN版本

  • 查看
cat /usr/local/cuda/include/cudnn.h | grep CUDNN_MAJOR -A 2
  • 结果
#define CUDNN_MAJOR      6
#define CUDNN_MINOR      0
#define CUDNN_PATCHLEVEL 21
--
#define CUDNN_VERSION    (CUDNN_MAJOR * 1000 + CUDNN_MINOR * 100 + CUDNN_PATCHLEVEL)
#include "driver_types.h"

2.3 显卡信息查看

2.3.1 VGA显卡信息

lspci | grep -i vga
# 结果
00:02.0 VGA compatible controller: Cirrus Logic GD 5446

2.3.2 Nvidia显卡

lspci | grep -i nvidia
# 结果
00:08.0 3D controller: NVIDIA Corporation Device 1bb3 (rev a1)

2.3.3 GPU信息

nvidia-smi

GPU基本信息及使用情况:


GPU

图2.1 GPU基本信息与使用情况

GPU参数说明

序号参数说明
0GPUGPU编号,多块GPU时,根据编号指定计算
1FanN/A风扇转速,0~100%,该速度是计算机期望的风扇转速,手机情况下,如果风扇堵转,可能达不到显示的转速,有的设备不会返回转速,因为它不依赖风扇冷却,而是通过其他外设保持低温(如空调/水冷等)
2Temp温度, ∘ C {^\circ}C C
3PerfGPU性能,P0~P12,P0表示最大性能,依次递减
4Persistence-M持续模式状态,持续模式耗能大,on模式下,在新的GPU应用启动时,耗时少,off模式,启动耗时,耗能低
5Pwr能耗,Uage使用时的能耗,Cap最大能耗
6Bus-IdGPU总线
7Disp.AGPU是否初始化(Display Active)
8Memory Usage显存使用率,7604(占用大小)/7606(显存实际大小)
9Volatile GPU-Util浮动的GPU使用率
10Compute M计算模式

处理参数说明

序号参数说明
1GPUGPU编号
2PID处理集成的ID
3Process Name进程名称
4GPU Memory UsageGPU内存占用

3 Tensorflow-gpu匹配CUDA及cuDNN

序号Tensorflow-gpu VersionCUDA VersioncuDNN Version
11.13107.4
21.1297
31.1197
41.10.097
51.9.097
61.8.097
71.7.097
81.6.097
91.5.097
101.4.086
111.3.086
121.2.085.1
131.0.085.1

注意
为保证Tensorflow正常使用GPU,请匹配三者的版本.

4 总结

  • 深度学习框架性能提升,依赖于开发环境的正确搭建;
  • 依据不同CUDA和cuDNN选择Tensorflow版本;
  • 底层技术需要了解,有能力需深入学习,有助于后期开发.

[参考文献]
[1]https://tensorflow.google.cn/install/source#linux
[2]https://blog.csdn.net/dcrmg/article/details/78146797?locationNum=5&fps=1
[3]https://blog.csdn.net/omodao1/article/details/83241074
[4]https://blog.csdn.net/a784586/article/details/78688842


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值