本文主要介绍MAP及最大后验及其相关数学内容。
MAP与最大后验
在贝叶斯统计学中,最大后验(Maximum A Posteriori,MAP)估计可以利用经验数据获得对未观测量的点态估计。它与Fisher的最大似然估计(Maximum Likelihood,ML)方法相近,不同的是它扩充了优化的目标函数,其中融合了预估计量的先验分布信息,所以最大后验估计可以看作是正则化(regularized)的最大似然估计。
来源:百度百科
数学相关
与最大似然估计类似,但是,在似然函数后面多乘了一项,即“待估计参数的先验分布”。故最大后验估计可以看作规则化的最大似然估计。
根据贝叶斯理论,对于θ的后验分布:
后验分布的目标为:
(分母为f(x),是固定值)
MAP认为,θ是一个随机变量,其先验概率密度函数是已知的,为P(θ),所以其目标为:
MLE认为,θ是非随机变量或者分布未知的随机变量,这两种情况都可以认为P(θ)均匀分布的,即该概率是一个固定值,P(θ)=C,所以其目标为:
注:最大后验估计可以看做贝叶斯估计的一种特定形式。