【深度学习知识点扫盲】MAP,最大后验

本文深入探讨了在贝叶斯统计背景下,最大后验估计(MAP)的概念,介绍了其与最大似然估计的区别,以及如何通过融合先验信息进行参数估计。还提供了后验分布的目标函数和两种观点下(MAP和MLE)的目标对比。
摘要由CSDN通过智能技术生成

本文主要介绍MAP及最大后验及其相关数学内容。

MAP与最大后验

在贝叶斯统计学中,最大后验(Maximum A Posteriori,MAP)估计可以利用经验数据获得对未观测量的点态估计。它与Fisher的最大似然估计(Maximum Likelihood,ML)方法相近,不同的是它扩充了优化的目标函数,其中融合了预估计量的先验分布信息,所以最大后验估计可以看作是正则化(regularized)的最大似然估计。

来源:百度百科

数学相关

与最大似然估计类似,但是,在似然函数后面多乘了一项,即“待估计参数的先验分布”。故最大后验估计可以看作规则化的最大似然估计。

根据贝叶斯理论,对于θ的后验分布:
这里写图片描述

后验分布的目标为:
这里写图片描述

(分母为f(x),是固定值)

MAP认为,θ是一个随机变量,其先验概率密度函数是已知的,为P(θ),所以其目标为:
这里写图片描述

MLE认为,θ是非随机变量或者分布未知的随机变量,这两种情况都可以认为P(θ)均匀分布的,即该概率是一个固定值,P(θ)=C,所以其目标为:
在这里插入图片描述

注:最大后验估计可以看做贝叶斯估计的一种特定形式。

### 深度学习训练与推理基础知识 #### 3.1 深度学习概述 深度学习作为人工智能的一个重要分支,通过构建多层神经网络来模拟人类大脑的学习机制。这种技术能够自动从大量数据中提取特征并进行复杂模式识别[^2]。 #### 3.2 神经网络结构 神经网络由输入层、隐藏层和输出层组成。每一层都包含若干节点(或称为神经元),这些节点之间通过权重连接起来形成复杂的网络架构。在训练过程中,通过对损失函数最小化调整各层间的权值参数,使得模型逐渐逼近最优解。 #### 3.3 训练过程详解 - **初始化**: 设置初始随机权重给定范围内的数值。 - **前向传播(Forward Propagation)**: 输入样本经过加权求和再激活后传递到下一层直到最终得到预测结果。 - **计算误差(Loss Calculation)**: 将实际标签y_true与预测值y_pred对比得出差距大小。 - **反向传播(Backpropagation)**: 利用链式法则沿着梯度方向更新每一步操作对应的参数w, b等以减小总误差。 - **优化器(Optimizer)**: 如SGD (Stochastic Gradient Descent), Adam等方法帮助更高效地找到全局极小点位置。 ```python import torch.optim as optim optimizer = optim.Adam(model.parameters(), lr=0.001) for epoch in range(num_epochs): optimizer.zero_grad() # 清除之前的梯度 output = model(input_data) # 前向传播获取预测值 loss = criterion(output, target) # 计算损失 loss.backward() # 反向传播计算梯度 optimizer.step() # 更新参数 ``` #### 3.4 推理(Inference) 当完成训练之后,就可以利用已经收敛好的模型来进行新数据上的分类或其他任务了。此时不再涉及任何参数修改动作,只需简单执行一次正向运算流程即可获得所需的结果。 ```python model.eval() with torch.no_grad(): predictions = model(new_input_data) ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

zhengdao9906

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值