矩阵快速幂---斐波那契数列

矩阵快速幂就是将快速幂和矩阵乘法结合起来,快速幂我之前的博客里,矩阵乘法就是将矩阵快速幂和快速幂结合,

代码

#include<bits/stdc++.h>
using namespace std;
struct node {
	int mat[15][15];//定义矩阵 
}x,y; 
node mul(node x,node y){//矩阵乘法 
	node tmp;
	for(int i=0;i<10;i++){
		for(int j=0;j<10;j++){
			tmp.mat [i][j]=0;
			for(int k=0;k<10;k++){
				tmp.mat [i][j]+=(x.mat [i][k]*y.mat [k][j])%10000007;
			}
			tmp.mat [i][j]=tmp.mat[i][j]%10000007;
		}
	}
	return tmp;
} 
node matpow(node x,node y,int num){//矩阵快速幂 
	while(num){
		if(num&1){
			y=mul(y,x);
		}
		x=mul(x,x);
		num=num>>1;
	}
	return y;
} 
int main()
{
	for(int i=0;i<10;i++)
	{
		for(int j=0;j<10;j++)
		{
			cin>>x.mat[i][j];
		}
	}
	for(int i=0;i<10;i++)
	{
		y.mat[i][i]=1;        //构造单位矩阵相当与1。即对角线为1的矩阵
	}
	int num;
	scanf("%d",&num);
    struct node cnt=matpow(x,y,num);
	for(int i=0;i<10;i++)
	{
		for(int j=0;j<10;j++)
		{
			printf("%d ",cnt.mat[i][j]);
		}
		cout<<endl; 
	} 
	
} 

矩阵快速幂与斐波那契额数列的结合

在这里插入图片描述
由上图 可得,我们只要解出左边的矩阵的n次方就可以了,这样我们就可以用到矩阵快速幂了,这样可以大大加快我们代码的速率,最后这个矩阵的[0][1],就是我们要的答案。

#include<bits/stdc++.h>
using namespace std;
struct node {
	int mat[2][2];
}x,y; 
node mul(node x,node y){//矩阵乘法 
	node tmp;
	for(int i=0;i<2;i++){
		for(int j=0;j<2;j++){
			tmp.mat [i][j]=0;
			for(int k=0;k<2;k++){
				tmp.mat [i][j]+=(x.mat [i][k]*y.mat [k][j])%10000;
			}
			tmp.mat [i][j]=tmp.mat[i][j]%10000;
		}
	}
	return tmp;
} 
node matpow(node x,node y,int num){//矩阵快速幂 
	while(num){
		if(num&1){
			y=mul(y,x);
		}
		x=mul(x,x);
		num=num>>1;
	}
	return y;
} 
int main()
{
	int num;
	while(scanf("%d",&num))
	{
		if(num==-1)
		{
			return 0;
		}
    x.mat[0][0]=1;
    x.mat[0][1]=1;
    x.mat[1][0]=1;
    x.mat[1][1]=0;
	for(int i=0;i<2;i++)
	{
		y.mat[i][i]=1; 
	}
    struct node cnt=matpow(x,y,num);
	cout<<cnt.mat[0][1]%10000<<endl;
    }
	
} 
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值