- 博客(22)
- 收藏
- 关注
原创 mac同时拥有miniconda3和anaconda,如何删除miniconda3而不是删除anaconda
删除Miniconda目录后,你需要编辑.bash_profile、.zshrc或其他shell配置文件,删除或注释掉所有指向Miniconda的路径。通常,Miniconda安装在~/miniconda3,而Anaconda则安装在~/anaconda3。确认了Miniconda的安装路径后,你可以使用rm命令来删除整个Miniconda目录。检查输出结果中包含的路径,看看是否可以找到指向Miniconda的路径。如果你的Miniconda安装在不同的目录,请相应地更改路径。
2024-04-17 11:36:16
1329
原创 python中形状不同的两个矩阵也可以相加
相加后得到的cc:array([[2, 2], [4, 4],[6, 6]])aa的维度是(3,2),bb的维度是(3,1)后面的是参考这个文章。
2023-09-20 09:21:03
693
原创 数值分析:拉格朗日插值法笔记以及C++代码实现
在实际应用中常常需要根据已知的函数点进行数据、模型的处理和分析,而有时候现有的数据是极少的,不足以支撑分析的进行,这时就需要使用一些数学的方法“模拟产生”一些新的但又比较靠谱的值来满足需求,这就是插值的作用。
2022-11-15 08:27:23
5078
1
原创 手写单纯形法推导过程
1. 关于单纯形法判别数定义的推导2.线性规划的最优性准则3.线性规划关于基B的Gauss-Jordan方程组4. 出基、入基、目标主元的选取条件推导5. 下降性条件的推导6.单纯形表的构造过程
2022-11-06 20:49:41
584
原创 一图详解Jacobi迭代法、Gauss-Seidel迭代法、SOR超松弛迭代法由一般形式转化为矩阵形式
一图详解Jacobi迭代法、Gauss-Seidel迭代法、SOR超松弛迭代法由一般形式转化为矩阵形式
2022-10-31 20:27:09
1285
原创 菜菜的sklearn-01决策树完整版
决策树(Decision Tree)是一种非参数的有监督学习方法,它能够从一系列有特征和标签的数据中总结出决策规 则,并用树状图的结构来呈现这些规则,以解决分类和回归问题。
2022-10-27 19:49:17
2212
1
原创 深度学习笔记:07神经网络之手写数字识别的经典实现
神经网络之手写数字识别的经典实现上一节完成了简单神经网络代码的实现,下面我们将进行最终的实现:输入一张手写图片后,网络输出该图片对应的数字。由于网络需要用0-9一共十个数字中挑选出一个,所以我们的网络最终输出层应该有十个节点编号为0-9,当网络读入一个图片进行识别时,如果网络认为它对应的数字应该是5所以他就会在5这个节点上输出一个高比率的值。–代表概率。人工智能的有意思的点就在这里,他不和之前我们学习的普通的程序一样,给出确定的结果,他的结果有一定的犹豫性。他会输出若干个结果,每个结果都有一定的概率,我
2022-04-01 19:19:53
2100
原创 深度学习笔记:06最简单的神经网络
首先先定义三个接口:class NeuralNetWork: def __init__(self): #初始化网络接口,设置输入层,中间层,和输出节点数 pass def train(self): #根据输入的训练数据更新节点链路权重 pass def query(self): #根据输入数据计算并输出答案 passclass NeuralNetWork: def __ini
2022-03-30 15:55:06
2773
原创 考研&复试数据结构:05队列Queue
队列Queue队列也是一种操作受限的线性表,只允许在表的一端进行插入,而在表的另一端进行删除。他的特点是:先进先出逻辑结构如下:一、队列的顺序存储结构队列的顺序存储结构是指分配一块连续的内存单元存放队列中的元素,并有两个指针:队头指针front指向队头元素,队尾指针rear指向队尾元素的下一个位置。(不同的书可能front和rear的指向不同,不过都大同小异)高频考点:队列元素的个数:(rear-front+MaxSize)% MaxSize队列已满条件:顺序存储:(rear+1)%
2022-03-29 21:18:44
599
原创 考研&复试数据结构:04栈
栈栈是一种规定只能一端进行插入或者删除的线性表。具有先进后出的特性一、顺序栈首先先记得栈的实现有两种方式,不同大学的考试不一样top指向下一个可插入位置,此时初始化时top = 0栈满条件为:top == MaxSize栈空条件为:top == 0top指向当前插入位置,即已插位置,此时初始化时top = -1;栈满条件为:top == MaxSize-1栈空条件为:top == -1考点:n个不同的元素进栈,不同出栈序列种数:卡特兰数:1、声明以及初始化:#i
2022-03-29 14:27:07
960
原创 考研&复试数据结构:03顺序表和链表总结
顺序表和链表总结1、逻辑结构:都属于线性表,都是线性结构2、存储结构(1)顺序表优点:支持随机存储,存储密度高。缺点:大片连续空间分配不方便,改变容量也不方便。(要么就不能改,要么就得realloc)。(2)链表优点:离散的小空间分配方便,弹性(可扩容)缺点:查找麻烦,时间复杂度O(n),并且存储密度低(因为还得空出来地方存指针)。3、基本操作:(1)创建:顺序表:得先预想以下分配多大空间最划算。链表:直接创建一个头结点就行(不创建也行,但是得声明一个头结点指针)。(2)销毁:
2022-03-28 21:59:55
643
原创 考研&复试数据结构:02线性表的链式表示以及约瑟夫环
线性表的链式表示顺序表可以随时读取表中的任意一个元素,他的存储位置可以用一个简单直观的公式直接表示,但插入和删除操作需要移动大量元素。链式存储线性表时,不需要使用地址连续的存储单元,即不要求逻辑上相邻的元素在物理上也相邻。链表1、节点声明以及初始化#include<stdio.h>#include<stdlib.h>typedef struct LNode{ int data; struct LNode* next;}LNode,*LinkList;void In
2022-03-28 15:03:38
1058
原创 考研&复试数据结构:01线性表的顺序表示
顺序存储结构分析文章目录顺序存储结构分析优点:缺点:1、静态顺序存储线性表优点:缺点:静态顺序存储线性表的基本实现:1、定义和初始化2、增时间复杂度分析2、删时间复杂度分析3、查(改类似)(1)按位查找(2)按值查找4、测试2、动态顺序存储线性表优点:缺点:动态顺序存储线性表的基本实现:1、增2、其余操作参考静态线性表的顺序存储结构又称为顺序表,它是用一组地址连续的存储单元依次存储线性表中的数据元素,从而使得逻辑上相邻的两个元素在物理位置上也相邻。优点:因为逻辑顺序和物理顺序相同,所以顺序表中的任
2022-03-27 17:37:23
668
原创 关于C语言中结构体的.访问和->访问结构体的关系
关于C语言中结构体的 . 访问和 -> 访问的关系1、谭浩强C语言P304写道:为了使用方便和直观,C语言允许吧(*p).num用p->num代替。‘->’代表一个箭头,p->num表示p所指向的结构体变量中的num成员。同样,(*p).name等于p->name。‘->’称为指向运算符。优先级:1;结合方向:自左向右*p = stu;如果P指向一个结构体变量stu,那么以下三种用法等价:stu.name = (*p).name = p->name;
2022-03-27 14:59:34
732
原创 深度学习笔记:05手算梯度下降法,详解神经网络迭代训练过程
深度学习笔记:05手算梯度下降法(gradient descent),详解神经网络迭代训练过程神经网络本质上是一个计算流程,在前端接收输入信号后,经过一层层复杂的运算,在最末端输出结果。然后将计算结果和正确结果相比较,得到误差,再根据误差通过相应计算方法改进网络内部的相关参数,使得网络下次再接收到同样的数据时,最终计算输出得到的结果与正确结果之间的误差能越来越小。1、合理的误差处理方法求 [t(k) - O(k)]对应最外层输出节点的误差计算方法这里需要搞清楚一个重要概念,就是如何计算误差,我们列一
2022-03-26 13:22:14
3489
原创 深度学习笔记:04依赖反向传播改进神经网络数据处理的精确度
04依赖反向传播改进神经网络数据处理的精确度1、反向传播简介前面说过,神经网络模型中,需要修正的参数是神经元链路之间的权重值,问题在于如何修改,如下图,假定最后神经元输出结果跟正确结果对比后得到一个误差,那么我们如何根据误差来修正W(1,1)和W(2,1)呢?神经网络模型的问题在于,任何一个节点链路权重的改变都会对最终结果产生影响。所以当我们拿到计算结果以后,不能仅只改变其中一个的权重,而是所有的权重都要做相应的修改。所以接下来的问题是我们如何把误差分诶给每个权重进行调整呢?合理的做法是:根据权
2022-03-25 21:00:57
2055
原创 深度学习笔记:03使用矩阵实现神经网络数据加工链
03使用矩阵实现神经网络数据加工链矩阵运算的应用:网络中第一层的两个节点分别把信号传送给第二层的两个节点,信号传送时需要经过权重的乘积运算,上图中总共有四个权重。我们可以把四个权重组成一个两行两列的矩阵(放在左边),第一层又接受两个输入信号(input_1,input_2)这两个信号可以形成一个两行一列的矩阵(放在右边),于是第二层的两个节点所接收到的信号值可以通过下面的矩阵运算获得。由此,依靠矩阵,我们就能从数学上简明的去描述信号的传递和处理过程:我们用符号X表示当前一层神经元节点要接收到的信
2022-03-25 13:43:54
1500
原创 深度学习笔记:02详解神经网络中的神经元和激活函数
深度学习笔记:02详解神经网络中的神经元和激活函数xor异或运算 -相同为0不同为1。深度学习的神经网络借助了生物学对脑神经系统的研究成果。1、生物学模型dendrites突触接收外界输入的信号以后,中间的axon轴突会把dendrites接受到的信号进行整合处理,右边的terminals叫终端输出,他会把轴突整合后的信号再切割成多个部分分别输送给其它神经元。神经元的工作机制:神经元接受的是电信号然后输出另一种电信号,但是如果输入电信好的强度不够大,那么神经元就不会做出任何的反应,如果电信
2022-03-25 12:45:40
2113
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人