
深度学习笔记
文章平均质量分 86
深度学习笔记
小橘子Orange
这个作者很懒,什么都没留下…
展开
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
-
深度学习笔记:01快速构建一个手写数字识别系统以及张量的概念
初识神经网络原创 2022-07-11 20:42:58 · 611 阅读 · 0 评论 -
深度学习笔记:06最简单的神经网络
首先先定义三个接口:class NeuralNetWork: def __init__(self): #初始化网络接口,设置输入层,中间层,和输出节点数 pass def train(self): #根据输入的训练数据更新节点链路权重 pass def query(self): #根据输入数据计算并输出答案 passclass NeuralNetWork: def __ini原创 2022-03-30 15:55:06 · 2798 阅读 · 0 评论 -
深度学习笔记:05手算梯度下降法,详解神经网络迭代训练过程
深度学习笔记:05手算梯度下降法(gradient descent),详解神经网络迭代训练过程神经网络本质上是一个计算流程,在前端接收输入信号后,经过一层层复杂的运算,在最末端输出结果。然后将计算结果和正确结果相比较,得到误差,再根据误差通过相应计算方法改进网络内部的相关参数,使得网络下次再接收到同样的数据时,最终计算输出得到的结果与正确结果之间的误差能越来越小。1、合理的误差处理方法求 [t(k) - O(k)]对应最外层输出节点的误差计算方法这里需要搞清楚一个重要概念,就是如何计算误差,我们列一原创 2022-03-26 13:22:14 · 3541 阅读 · 0 评论 -
深度学习笔记:04依赖反向传播改进神经网络数据处理的精确度
04依赖反向传播改进神经网络数据处理的精确度1、反向传播简介前面说过,神经网络模型中,需要修正的参数是神经元链路之间的权重值,问题在于如何修改,如下图,假定最后神经元输出结果跟正确结果对比后得到一个误差,那么我们如何根据误差来修正W(1,1)和W(2,1)呢?神经网络模型的问题在于,任何一个节点链路权重的改变都会对最终结果产生影响。所以当我们拿到计算结果以后,不能仅只改变其中一个的权重,而是所有的权重都要做相应的修改。所以接下来的问题是我们如何把误差分诶给每个权重进行调整呢?合理的做法是:根据权原创 2022-03-25 21:00:57 · 2079 阅读 · 0 评论 -
深度学习笔记:03使用矩阵实现神经网络数据加工链
03使用矩阵实现神经网络数据加工链矩阵运算的应用:网络中第一层的两个节点分别把信号传送给第二层的两个节点,信号传送时需要经过权重的乘积运算,上图中总共有四个权重。我们可以把四个权重组成一个两行两列的矩阵(放在左边),第一层又接受两个输入信号(input_1,input_2)这两个信号可以形成一个两行一列的矩阵(放在右边),于是第二层的两个节点所接收到的信号值可以通过下面的矩阵运算获得。由此,依靠矩阵,我们就能从数学上简明的去描述信号的传递和处理过程:我们用符号X表示当前一层神经元节点要接收到的信原创 2022-03-25 13:43:54 · 1537 阅读 · 0 评论 -
深度学习笔记:02详解神经网络中的神经元和激活函数
深度学习笔记:02详解神经网络中的神经元和激活函数xor异或运算 -相同为0不同为1。深度学习的神经网络借助了生物学对脑神经系统的研究成果。1、生物学模型dendrites突触接收外界输入的信号以后,中间的axon轴突会把dendrites接受到的信号进行整合处理,右边的terminals叫终端输出,他会把轴突整合后的信号再切割成多个部分分别输送给其它神经元。神经元的工作机制:神经元接受的是电信号然后输出另一种电信号,但是如果输入电信好的强度不够大,那么神经元就不会做出任何的反应,如果电信原创 2022-03-25 12:45:40 · 2163 阅读 · 0 评论 -
深度学习笔记:07神经网络之手写数字识别的经典实现
神经网络之手写数字识别的经典实现上一节完成了简单神经网络代码的实现,下面我们将进行最终的实现:输入一张手写图片后,网络输出该图片对应的数字。由于网络需要用0-9一共十个数字中挑选出一个,所以我们的网络最终输出层应该有十个节点编号为0-9,当网络读入一个图片进行识别时,如果网络认为它对应的数字应该是5所以他就会在5这个节点上输出一个高比率的值。–代表概率。人工智能的有意思的点就在这里,他不和之前我们学习的普通的程序一样,给出确定的结果,他的结果有一定的犹豫性。他会输出若干个结果,每个结果都有一定的概率,我原创 2022-04-01 19:19:53 · 2120 阅读 · 0 评论