数值分析:拉格朗日插值法笔记以及C++代码实现

插值需求的诞生:如何通过已知数据得到函数的近似解析表达式,从而获得更多的有用数据。
在实际应用中常常需要根据已知的函数点进行数据、模型的处理和分析,而有时候现有的数据是极少的,不足以支撑分析的进行,这时就需要使用一些数学的方法“模拟产生”一些新的但又比较靠谱的值来满足需求,这就是插值的作用。

一、Lagrange插值节点基函数推导

Lagrange插值节点基函数推导
Lagrange插值节点基函数推导

二、n次Lagrange插值多项式公式推导

由于上面已经推导出Lagrange插值节点基函数的公式所以下面直接带入就可以了。
n次Lagrange插值多项式公式推导

三、Lagrange插值余项(误差)推导

Lagrange插值余项(误差)推导

四、例题

在这里插入图片描述

五、插值误差估计-事后误差估计

插值误差估计

六、C++代码实现以及验证例题

//定义拉格朗日插值多项式函数.目标:输入想预测的数字返回预测值
//x数组,y数组,num为想要预测的x,n为拉格朗日多项式次数
double Lagrange(double* x,double* y,double num,int n) {
	//x,y数组长度必须一致
	if ((sizeof(x) / sizeof(x[0])) != (sizeof(y) / sizeof(y[0]))) {
		cout << "x,y数组长度不一致" << endl;
		return 99999;
	}
	//给定n+1个节点最多只能构造n次Lagrange插值节点基函数
	if (sizeof(x) / sizeof(x[0]) > n) {
		return 99999;
	}

	//构造Lagrange插值节点基函数
	double* l = new double[n+1];
	for (int k = 0; k <= n; k++) {
		double Z = 1;
		for (int j = 0; j <= n;j++) {
			if (j == k) {
				continue;
			}
			Z = Z * (num - x[j]) / (x[k] - x[j]);
		}
		l[k] = Z;
	}

	//计算L_n(x):
	double Ln = 0;
	for (int k = 0; k <= n; k++) {
		Ln = Ln + l[k]*y[k];
	}
	return Ln;
}
int main() {
	double x[] = { 10,11,12,13 };
	double y[] = { 2.302585,2.397895,2.484907,2.564949 };
	int n = 2;
	double num = 11.25;
	cout << "预测值为:" << Lagrange(x, y, num, n) << endl;
	return 0;
}

在这里插入图片描述

  • 19
    点赞
  • 75
    收藏
    觉得还不错? 一键收藏
  • 1
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值