pytorch学习笔记(2020.09.04)

这篇博客记录了作者在艰难安装Anaconda、PyCharm和PyTorch之后开始学习深度学习的过程。内容主要包括准备工作,如理解和使用`from __future__ import`,以及基础和高级版的PyTorch张量(Tensor)创建,作为多维矩阵进行运算。文章引用了在线资源并鼓励读者继续深入学习。
摘要由CSDN通过智能技术生成

前言

写于艰难安装Anaconda/Pycharm/Pytorch基础之上(从Windows到Ubuntu)。
在看了一周深度学习基础知识后,决定动手编一编(推荐李宏毅老师的机器学习课程,B站可搜)。

提示:本文程序参考https://pytorch.org/tutorials/beginner/blitz/tensor_tutorial.html#sphx-glr-beginner-blitz-tensor-tutorial-py

开始学习!

1.准备工作

代码如下:

from __future__ import print_function
import torch

对于所有的from__ future__ import,则意味着在新旧版本的兼容性方面存在差异,处理方法是按照最新的特性来处理。可以将future看成Python的一个专门存放新特性的模块。【参考学习https://blog.csdn.net/anuory/article/details/90245930】

2.创建各种矩阵

基础版

x = torch.empty(5, 3)
print(x)

y = torch.tensor([5.5, 3])
print(y)

z = torch.zeros(5, 3, dtype=torch.long)
print(z)

a = torch.ones(5,3,dtype=torch.long)
print(a)

输出

tensor([[       nan, 4.5677e-41,        nan],
        [4.5677e-41,        nan, 4.5677e-41],
        [       nan, 4.5677e-41,        nan],
        [4.5677e-41,        nan, 4.5677e-41],
        [       nan, 4.5677e-41,        nan]])
tensor([5.5000, 3.0000])
tensor([[0, 0, 0],
        [0, 0, 0],
        [0, 0, 0],
        [0, 0, 0],
        [0, 0, 0]])
tensor([[1, 1, 1],
        [1, 1, 1],
        [1, 1, 1],
        [1, 1, 1],
        [1, 1, 1]])

Pytorch里面处理的最基本的操作对象就是Tensor(张量),它表示的其实就是一个多维矩阵,并有矩阵相关的运算操作。【参考学习:https://blog.csdn.net/out_of_memory_error/article/details/81258809?utm_medium=distribute.pc_relevant.none-task-blog-BlogCommendFromMachineLearnPai2-2.nonecase&depth_1-utm_source=distribute.pc_relevant.none-task-blog-BlogCommendFromMachineLearnPai2-2.nonecase】

看起来很高级版

b = torch.ones(5,3,dtype=torch.double)   
print(b)

c = b.new_ones(4,
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值