前言
写于艰难安装Anaconda/Pycharm/Pytorch基础之上(从Windows到Ubuntu)。
在看了一周深度学习基础知识后,决定动手编一编(推荐李宏毅老师的机器学习课程,B站可搜)。
提示:本文程序参考https://pytorch.org/tutorials/beginner/blitz/tensor_tutorial.html#sphx-glr-beginner-blitz-tensor-tutorial-py
开始学习!
1.准备工作
代码如下:
from __future__ import print_function
import torch
对于所有的from__ future__ import,则意味着在新旧版本的兼容性方面存在差异,处理方法是按照最新的特性来处理。可以将future看成Python的一个专门存放新特性的模块。【参考学习https://blog.csdn.net/anuory/article/details/90245930】
2.创建各种矩阵
基础版
x = torch.empty(5, 3)
print(x)
y = torch.tensor([5.5, 3])
print(y)
z = torch.zeros(5, 3, dtype=torch.long)
print(z)
a = torch.ones(5,3,dtype=torch.long)
print(a)
输出
tensor([[ nan, 4.5677e-41, nan],
[4.5677e-41, nan, 4.5677e-41],
[ nan, 4.5677e-41, nan],
[4.5677e-41, nan, 4.5677e-41],
[ nan, 4.5677e-41, nan]])
tensor([5.5000, 3.0000])
tensor([[0, 0, 0],
[0, 0, 0],
[0, 0, 0],
[0, 0, 0],
[0, 0, 0]])
tensor([[1, 1, 1],
[1, 1, 1],
[1, 1, 1],
[1, 1, 1],
[1, 1, 1]])
Pytorch里面处理的最基本的操作对象就是Tensor(张量),它表示的其实就是一个多维矩阵,并有矩阵相关的运算操作。【参考学习:https://blog.csdn.net/out_of_memory_error/article/details/81258809?utm_medium=distribute.pc_relevant.none-task-blog-BlogCommendFromMachineLearnPai2-2.nonecase&depth_1-utm_source=distribute.pc_relevant.none-task-blog-BlogCommendFromMachineLearnPai2-2.nonecase】
看起来很高级版
b = torch.ones(5,3,dtype=torch.double)
print(b)
c = b.new_ones(4,