作为程序员其实有很多的渠道开源学习, 微软开源的这一款 AI Agents 入门课程对于想学智能体的同学来说一定要去看看。支持 12 种语言。
⚙️ 1. 课程概览
-
• 目标群体: 零基础初学者、Python开发者、技术爱好者、学生及非技术背景从业者。
-
-
• 课程结构: 共10节课,每课包含书面教程(README)、视频讲解、Python代码示例及扩展资源。
-
-
• 语言支持: 提供简体中文、英文等13种语言版本,降低非英语用户学习门槛。
📚 2. 10节核心课程内容
以下是课程的核心模块及其技术重点:
课程序号 | 主题 | 核心内容 |
1 | AI代理简介及应用场景 | AI Agent基础概念、与传统AI系统的区别、客户服务/内容创作等场景。 |
2 | 探索AI Agentic框架 | 对比微软Semantic Kernel与AutoGen框架的适用场景。 |
3-9 | 设计模式深度解析 | 工具调用、多代理协作、元认知(自我反思)、规划策略(如反向规划)。 |
10 | 生产环境部署 | 性能优化、安全性、监控日志及扩展性设计。 |
🌟 3. 课程特色与优势
-
• 实践驱动:每课均提供可运行的Python代码,结合Semantic Kernel/AutoGen框架实战。
-
• 企业级适配:支持Azure AI Foundry和GitHub Models,无缝对接云服务平台。
-
• 社区生态:依托GitHub活跃社区(⭐️ 23.4k+ Stars)和Azure AI Discord论坛,提供协作支持。
-
• 学习资源多样性:配套短视频(约7分钟/集)、Jupyter Notebook示例、多语言文档。
⚙️ 4. 学习准备与环境要求
-
• 前置知识:基础Python编程能力(无AI经验要求)。
-
• 工具依赖:
-
• Python 3.12+
-
• GitHub账户(用于Fork仓库)
-
• Azure订阅(可选,用于高级模型部署)。
-
-
• 部署平台:兼容Docker、Azure AI Agent Service[citation:10]。
👥 5. 适用场景
用户类型 | 应用方向 |
开发者 | 将AI代理集成至客服系统、决策引擎等企业应用。 |
学生/研究者 | 学习多代理协作、元认知等前沿AI架构。 |
非技术从业者 | 理解AI代理在业务流程自动化中的潜力。 |
🔗 6. 资源链接
-
1. GitHub仓库
-
2. 中文版课程主页
-
3. 配套视频(Microsoft Learn)
-
4. 社区讨论:加入 Azure AI Community Discord
💎 总结
不得不说微软在新技术的入门课程确实做了不少的功夫,想要学习某一个技能的时候都可以去微软的 GitHub 地址去看看是不是 已经存在入门课程了。
如何系统的去学习大模型LLM ?
大模型时代,火爆出圈的LLM大模型让程序员们开始重新评估自己的本领。 “AI会取代那些行业
?”“谁的饭碗又将不保了?
”等问题热议不断。
事实上,抢你饭碗的不是AI,而是会利用AI的人。
继科大讯飞、阿里、华为
等巨头公司发布AI产品后,很多中小企业也陆续进场!超高年薪,挖掘AI大模型人才! 如今大厂老板们,也更倾向于会AI的人,普通程序员,还有应对的机会吗?
与其焦虑……
不如成为「掌握AI工具的技术人
」,毕竟AI时代,谁先尝试,谁就能占得先机!
但是LLM相关的内容很多,现在网上的老课程老教材关于LLM又太少。所以现在小白入门就只能靠自学,学习成本和门槛很高。
基于此,我用做产品的心态来打磨这份大模型教程,深挖痛点并持续修改了近70次后,终于把整个AI大模型的学习门槛,降到了最低!
在这个版本当中:
第一您不需要具备任何算法和数学的基础
第二不要求准备高配置的电脑
第三不必懂Python等任何编程语言
您只需要听我讲,跟着我做即可,为了让学习的道路变得更简单,这份大模型教程已经给大家整理并打包,现在将这份 LLM大模型资料
分享出来:包括LLM大模型书籍、640套大模型行业报告、LLM大模型学习视频、LLM大模型学习路线、开源大模型学习教程
等, 😝有需要的小伙伴,可以 扫描下方二维码领取🆓↓↓↓
一、LLM大模型经典书籍
AI大模型已经成为了当今科技领域的一大热点,那以下这些大模型书籍就是非常不错的学习资源。
二、640套LLM大模型报告合集
这套包含640份报告的合集,涵盖了大模型的理论研究、技术实现、行业应用等多个方面。无论您是科研人员、工程师,还是对AI大模型感兴趣的爱好者,这套报告合集都将为您提供宝贵的信息和启示。(几乎涵盖所有行业)
三、LLM大模型系列视频教程
四、LLM大模型开源教程(LLaLA/Meta/chatglm/chatgpt)
五、AI产品经理大模型教程
LLM大模型学习路线 ↓
阶段1:AI大模型时代的基础理解
-
目标:了解AI大模型的基本概念、发展历程和核心原理。
-
内容:
- L1.1 人工智能简述与大模型起源
- L1.2 大模型与通用人工智能
- L1.3 GPT模型的发展历程
- L1.4 模型工程
- L1.4.1 知识大模型
- L1.4.2 生产大模型
- L1.4.3 模型工程方法论
- L1.4.4 模型工程实践
- L1.5 GPT应用案例
阶段2:AI大模型API应用开发工程
-
目标:掌握AI大模型API的使用和开发,以及相关的编程技能。
-
内容:
- L2.1 API接口
- L2.1.1 OpenAI API接口
- L2.1.2 Python接口接入
- L2.1.3 BOT工具类框架
- L2.1.4 代码示例
- L2.2 Prompt框架
- L2.3 流水线工程
- L2.4 总结与展望
阶段3:AI大模型应用架构实践
-
目标:深入理解AI大模型的应用架构,并能够进行私有化部署。
-
内容:
- L3.1 Agent模型框架
- L3.2 MetaGPT
- L3.3 ChatGLM
- L3.4 LLAMA
- L3.5 其他大模型介绍
阶段4:AI大模型私有化部署
-
目标:掌握多种AI大模型的私有化部署,包括多模态和特定领域模型。
-
内容:
- L4.1 模型私有化部署概述
- L4.2 模型私有化部署的关键技术
- L4.3 模型私有化部署的实施步骤
- L4.4 模型私有化部署的应用场景
这份 LLM大模型资料
包括LLM大模型书籍、640套大模型行业报告、LLM大模型学习视频、LLM大模型学习路线、开源大模型学习教程
等, 😝有需要的小伙伴,可以 扫描下方二维码领取🆓↓↓↓