LLM大模型: RLHF-DPO原理和源码解析

1、前段时间国外某大学反向抄袭国内某团队的大模型闹得沸沸扬扬,国内被抄袭的大模型是MiniCPM,详细资料:https://github.com/OpenBMB/MiniCPM ; 能被国外同行抄袭,必定有过人之处,粗略看了一下https://github.com/OpenBMB/MiniCPM/blob/main/model/modeling_minicpm.py 模型文件,发现整个结构和llama类似,没啥特别的,如下:

既然模型整体的结构和llama接近,没啥特别的,效果好就看整个训练策略了!作者详细介绍了训练策略:https://shengdinghu.notion.site/MiniCPM-c805a17c5c8046398914e47f0542095a 主要是从这5个方面优化的:

  • Hyper-parameters
  • Batch size
  • Learning Rate
  • Learning Rate Scheduler
  • Data Strategy

所以要想大模型效果好,有个大的改进方向:

  • 改模型细节:比如llama用旋转位置编码代替绝对位置编码、采用flashAttention等
  • 改训练策略:比如MiniCPM(官方暂未公布实现代码)

MiniCPM训练策略介绍的文章中指出:采用DPO对齐后,MiniCPM的得分甚至超过了llama2-70b-chat,效果很好啊!这个DPO又是啥了?

2、目前市面上主流LLM,界面上都有反馈功能:觉得好的点赞,绝不不好的点倒赞!背后用的就是强化学习!现成已经实现的库在这里:https://github.com/huggingface/trl

 (1)为便于理解,先举个例子看看。DPO的训练语料结构简单,一条语料只有3个字段,如下:
{
  "prompt": "What is the capital of China?",
  "chosen": "The capital of China is Beijing.",
  "rejected": "The capital of China is Shanghai."
}

chosen是正确的(或则说符合用户偏好)的答案,reject则相反。DPO的目的就是让LLM的回答尽可能接近chosen答案!因为trl已经封装好了,使用起来也很简单,如下:

from datasets import Dataset

data = [
    {
        "prompt": "What is the capital of China?",
        "chosen": "The capital of China is Beijing.",
        "rejected": "The capital of China is Shanghai."
    },
    {
        "prompt": "What is 2 + 2?",
        "chosen": "2 + 2 equals 4.",
        "rejected": "2 + 2 equals 5."
    }
]

# 将数据转换为 Hugging Face Dataset 格式
dataset = Dataset.from_list(data)

#加载底座模型
from transformers import GPT2Tokenizer, GPT2LMHeadModel
tokenizer = GPT2Tokenizer.from_pretrained("gpt2")
model = GPT2LMHeadModel.from_pretrained("gpt2")
model_ref = GPT2LMHeadModel.from_pretrained("gpt2")  # 参考模型

#数据预处理,转成token
def preprocess_function(examples):
    inputs = tokenizer(examples["prompt"], padding="max_length", truncation=True, max_length=512, return_tensors="pt")
    chosen_outputs = tokenizer(examples["chosen"], padding="max_length", truncation=True, max_length=512, return_tensors="pt")
    rejected_outputs = tokenizer(examples["rejected"], padding="max_length", truncation=True, max_length=512, return_tensors="pt")
    return {
        "input_ids": inputs["input_ids"],
        "attention_mask": inputs["attention_mask"],
        "chosen_ids": chosen_outputs["input_ids"],
        "rejected_ids": rejected_outputs["input_ids"]
    }
encoded_dataset = dataset.map(preprocess_function, batched=True)

from trl import DPOTrainer
from transformers import TrainingArguments

# 设置训练参数,准备训练
training_args = TrainingArguments(
    output_dir="./results",
    evaluation_strategy="epoch",
    learning_rate=2e-5,
    per_device_train_batch_size=1,
    num_train_epochs=3,
    weight_decay=0.01,
)

# 初始化 DPOTrainer
trainer = DPOTrainer(
    model=model,
    model_ref=model_ref,
    beta=0.1,  # DPO损失中的温度超参数
    args=training_args,
    train_dataset=encoded_dataset,
    tokenizer=tokenizer
)

# 开始训练
trainer.train()

由于trl已经封装成熟,整个流程简单、清晰:准备数据,转换数据,加载模型,调用DPO接口训练!流程和lora看起来几乎一摸一样,没啥本质区别!

(2)传统的GPT大模型,原理是根据上文预测下一个token的概率,loss函数是cross entropy,通过这种auto regresison的方式完成语料的训练;DPO的核心思路是让LLM的回答往chosen靠近,远离reject的答案,从数学上讲是怎么实现的了?

这里采用Bradley-Terry模型:x是prompt,y1是chosen回答,y2是reject回答,整个表达式就是y1的reward大于y2产生的reward:

回答可能是负数,加上exp,上述表达式变成了:

因为训练数据是批量的,不是单个,所以需要综合考虑所有训练语料的P值;同时为了方便处理exp,需要求ln,所以整个loss演变如下:

其中Yw是chosen,Yl是reject,整个数学表达式看着复杂,其实数学意义很简单,从里往外看:

  • chosen的r(x,Yw)要比reject的r(x,Yl)高!
  • x、Yw、Yl从分布D中取出,然后所有的结果求期望
  • 因为loss是越小越好,所以前面加上负号

(3)这样就完了?哪有这么简单!现在的思路很简单:用chosen和reject牵引基准模型的输出,尽可能靠近chosen。实际操作时,会遇到另一个问题:大量DPO语料训练后,基准模型的参数被改成了适应DPO的语料,自己原来训练语料相关的数据被灾难性遗忘【类似问题也存在于lora微调:微调数据不能全部用垂直领域的数据,还是要适当加一点通用领域的数据,避免基座的模型出现灾难性遗忘】。在DPO这里为了避免类似问题,是在loss上做了改进,如下:既要reward高,又要尽可能贴近原来的基座模型,两手都要抓,两手都要硬!

全是数学推导了:

详细的推导过程可以参考:https://www.bilibili.com/video/BV1GF4m1L7Nt/?spm_id_from=333.337.search-card.all.click&vd_source=241a5bcb1c13e6828e519dd1f78f35b2 最终的loss如下:

和前面的那个loss比,只是让每个更新参数后的模型(policy model)的reward除以了使用基座模型(reference model)得到的reward,我个人觉得没有本质变化!

(4)DPO的源码都在trl包里面了:dpo_loss计算的方法如下:

(5)个人观点:深度神经网络用于提取特征维度,生成特征向量;强化学习用于指明发展演进方向,这点和人类从小的学习思路很接近,所以 深度学习+强化学习 = 人工智能!

如何系统的去学习AI大模型LLM ?

作为一名热心肠的互联网老兵,我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。

但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的 AI大模型资料 包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来

所有资料 ⚡️ ,朋友们如果有需要全套 《LLM大模型入门+进阶学习资源包》,扫码获取~

👉CSDN大礼包🎁:全网最全《LLM大模型入门+进阶学习资源包》免费分享(安全链接,放心点击)👈

一、全套AGI大模型学习路线

AI大模型时代的学习之旅:从基础到前沿,掌握人工智能的核心技能!

img

二、640套AI大模型报告合集

这套包含640份报告的合集,涵盖了AI大模型的理论研究、技术实现、行业应用等多个方面。无论您是科研人员、工程师,还是对AI大模型感兴趣的爱好者,这套报告合集都将为您提供宝贵的信息和启示。

img

三、AI大模型经典PDF籍

随着人工智能技术的飞速发展,AI大模型已经成为了当今科技领域的一大热点。这些大型预训练模型,如GPT-3、BERT、XLNet等,以其强大的语言理解和生成能力,正在改变我们对人工智能的认识。 那以下这些PDF籍就是非常不错的学习资源。

img

在这里插入图片描述

四、AI大模型商业化落地方案

img

阶段1:AI大模型时代的基础理解

  • 目标:了解AI大模型的基本概念、发展历程和核心原理。
  • 内容
    • L1.1 人工智能简述与大模型起源
    • L1.2 大模型与通用人工智能
    • L1.3 GPT模型的发展历程
    • L1.4 模型工程
      - L1.4.1 知识大模型
      - L1.4.2 生产大模型
      - L1.4.3 模型工程方法论
      - L1.4.4 模型工程实践
    • L1.5 GPT应用案例

阶段2:AI大模型API应用开发工程

  • 目标:掌握AI大模型API的使用和开发,以及相关的编程技能。
  • 内容
    • L2.1 API接口
      - L2.1.1 OpenAI API接口
      - L2.1.2 Python接口接入
      - L2.1.3 BOT工具类框架
      - L2.1.4 代码示例
    • L2.2 Prompt框架
      - L2.2.1 什么是Prompt
      - L2.2.2 Prompt框架应用现状
      - L2.2.3 基于GPTAS的Prompt框架
      - L2.2.4 Prompt框架与Thought
      - L2.2.5 Prompt框架与提示词
    • L2.3 流水线工程
      - L2.3.1 流水线工程的概念
      - L2.3.2 流水线工程的优点
      - L2.3.3 流水线工程的应用
    • L2.4 总结与展望

阶段3:AI大模型应用架构实践

  • 目标:深入理解AI大模型的应用架构,并能够进行私有化部署。
  • 内容
    • L3.1 Agent模型框架
      - L3.1.1 Agent模型框架的设计理念
      - L3.1.2 Agent模型框架的核心组件
      - L3.1.3 Agent模型框架的实现细节
    • L3.2 MetaGPT
      - L3.2.1 MetaGPT的基本概念
      - L3.2.2 MetaGPT的工作原理
      - L3.2.3 MetaGPT的应用场景
    • L3.3 ChatGLM
      - L3.3.1 ChatGLM的特点
      - L3.3.2 ChatGLM的开发环境
      - L3.3.3 ChatGLM的使用示例
    • L3.4 LLAMA
      - L3.4.1 LLAMA的特点
      - L3.4.2 LLAMA的开发环境
      - L3.4.3 LLAMA的使用示例
    • L3.5 其他大模型介绍

阶段4:AI大模型私有化部署

  • 目标:掌握多种AI大模型的私有化部署,包括多模态和特定领域模型。
  • 内容
    • L4.1 模型私有化部署概述
    • L4.2 模型私有化部署的关键技术
    • L4.3 模型私有化部署的实施步骤
    • L4.4 模型私有化部署的应用场景

学习计划:

  • 阶段1:1-2个月,建立AI大模型的基础知识体系。
  • 阶段2:2-3个月,专注于API应用开发能力的提升。
  • 阶段3:3-4个月,深入实践AI大模型的应用架构和私有化部署。
  • 阶段4:4-5个月,专注于高级模型的应用和部署。
这份完整版的所有 ⚡️ 大模型 LLM 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

全套 《LLM大模型入门+进阶学习资源包↓↓↓ 获取~

👉CSDN大礼包🎁:全网最全《LLM大模型入门+进阶学习资源包》免费分享(安全链接,放心点击)👈

  • 19
    点赞
  • 9
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值