在 AI 技术迅猛发展的今天,构建智能体(AI Agent)已成为许多企业和个人的需求。然而,传统开发往往需要深厚的编程知识,门槛较高。
比如字节的Coze作为目前最火爆的智能体工作流平台,许多设计师、建筑师、文员等非技术人员都可以通过它构建智能体工作流,创建独特创意的AI助手。
今天推荐一个在 GitHub 上开源的轻量级可视化 AI 智能体工作流构建器:PySpur。
它提供了拖拽式构建、循环迭代、文件上传、结构化输出、RAG、多模态支持、工具集成等功能,让复杂的 AI 系统构建变得轻松无比。
主要功能
1、拖拽式构建
几秒内构建、测试并迭代:通过直观的拖拽界面,用户可以快速创建工作流,减少了编写复杂代码的时间。
适用于快速构建原型、自动化任务等场景,极大提升了工作效率。
2、循环与记忆功能
支持智能体在多个迭代中记住之前的状态,让模型能够从每次的反馈中不断学习和优化,进行有效的决策和反馈循环。
特别适用于那些需要多轮迭代和实时反馈的应用场景,例如智能对话系统、推荐引擎等。
3、文件上传
支持上传文件或粘贴 URL 来处理文档,尤其适用于需要文档解析、摘要提取等任务。
4、结构化输出
提供 JSON Schema 的 UI 编辑器,帮助用户生成结构化的数据输出格式,适用于数据接口与数据库存储。
可轻松设计和定制输出的数据结构,支持与其他系统或应用的集成。
5、RAG
解析、分块、嵌入并将数据插入向量数据库,使得检索和生成模型的调用更高效、精确。
6、多模态支持
支持视频、图像、音频、文本、代码等多种模态,让用户能够在同一个工作流中处理和分析多种不同类型的数据。
无论是进行视频分析、图像处理,还是处理音频和文本数据都可以。
7、工具集成
支持与多种工具和平台的集成,如 Slack、Firecrawl.dev、Google Sheets、GitHub 等,用户可以通过集成增强工作流的功能。
与常见的工作流平台、开发工具无缝连接,提升系统的整体协调性。
8、基于 Python
支持通过创建单个 Python 文件来添加新节点,开发者可以灵活地扩展 PySpur 的功能。
9、LLM 支持
支持 超过 100 个 LLM 提供商、嵌入器和向量数据库,用户可以根据需求选择合适的模型和工具进行集成。
快速使用
PySpur 已经构建为一个三方模块,可以直接通过 pip 命令安装。
① 安装 PySpur
代码解读
复制代码
pip install pyspur
② 用 PySpur 初始化一个项目,结果中会包含.env文件的新目录。
perl
代码解读
复制代码
pyspur init my-project cd my-project
③ 启动 pyspur 服务
css
代码解读
复制代码
pyspur serve --sqlite
默认情况下,会使用 sqlite 数据库在 http://localhost:6080
启动 PySpur 应用程序。
建议在 .env 文件中配置一个 postgres 实例 URL,以获得更稳定的使用体验。
也可在这里配置LLM提供商的API Key。
当然它也支持 Docker 一键部署:
bash
代码解读
复制代码
curl -fsSL https://raw.githubusercontent.com/PySpur-com/pyspur/main/start_pyspur_docker.sh | bash -s pyspur-project
功能截图展示
在节点级别调试:
多模态(上传文件或粘贴URL):
RAG创建文档集合(分块 + 解析):
写在最后
与其他工作流自动化工具相比,PySpur 专注于 AI 智能体构建,提供了 RAG、多模态支持和工具集成的独特组合。
它将数据处理、AI 模型训练、工具集成等功能完美结合,提供了一个简单、直观、强大的工作流构建平台。
通过 拖拽式构建 和 一键部署,开发者可以在短时间内构建、优化和部署智能应用。
无论你是正在进行 机器学习 项目的开发,还是希望为你的企业系统添加更多智能功能,PySpur 都能够提供你所需要的高效工作流。
GitHub 项目地址:github.com/PySpur-Dev/…
如何系统的去学习大模型LLM ?
大模型时代,火爆出圈的LLM大模型让程序员们开始重新评估自己的本领。 “AI会取代那些行业
?”“谁的饭碗又将不保了?
”等问题热议不断。
事实上,抢你饭碗的不是AI,而是会利用AI的人。
继科大讯飞、阿里、华为
等巨头公司发布AI产品后,很多中小企业也陆续进场!超高年薪,挖掘AI大模型人才! 如今大厂老板们,也更倾向于会AI的人,普通程序员,还有应对的机会吗?
与其焦虑……
不如成为「掌握AI工具的技术人
」,毕竟AI时代,谁先尝试,谁就能占得先机!
但是LLM相关的内容很多,现在网上的老课程老教材关于LLM又太少。所以现在小白入门就只能靠自学,学习成本和门槛很高。
基于此,我用做产品的心态来打磨这份大模型教程,深挖痛点并持续修改了近70次后,终于把整个AI大模型的学习门槛,降到了最低!
在这个版本当中:
第一您不需要具备任何算法和数学的基础
第二不要求准备高配置的电脑
第三不必懂Python等任何编程语言
您只需要听我讲,跟着我做即可,为了让学习的道路变得更简单,这份大模型教程已经给大家整理并打包,现在将这份 LLM大模型资料
分享出来:包括LLM大模型书籍、640套大模型行业报告、LLM大模型学习视频、LLM大模型学习路线、开源大模型学习教程
等, 😝有需要的小伙伴,可以 扫描下方二维码领取🆓↓↓↓
一、LLM大模型经典书籍
AI大模型已经成为了当今科技领域的一大热点,那以下这些大模型书籍就是非常不错的学习资源。
二、640套LLM大模型报告合集
这套包含640份报告的合集,涵盖了大模型的理论研究、技术实现、行业应用等多个方面。无论您是科研人员、工程师,还是对AI大模型感兴趣的爱好者,这套报告合集都将为您提供宝贵的信息和启示。(几乎涵盖所有行业)
三、LLM大模型系列视频教程
四、LLM大模型开源教程(LLaLA/Meta/chatglm/chatgpt)
五、AI产品经理大模型教程
LLM大模型学习路线 ↓
阶段1:AI大模型时代的基础理解
-
目标:了解AI大模型的基本概念、发展历程和核心原理。
-
内容:
- L1.1 人工智能简述与大模型起源
- L1.2 大模型与通用人工智能
- L1.3 GPT模型的发展历程
- L1.4 模型工程
- L1.4.1 知识大模型
- L1.4.2 生产大模型
- L1.4.3 模型工程方法论
- L1.4.4 模型工程实践
- L1.5 GPT应用案例
阶段2:AI大模型API应用开发工程
-
目标:掌握AI大模型API的使用和开发,以及相关的编程技能。
-
内容:
- L2.1 API接口
- L2.1.1 OpenAI API接口
- L2.1.2 Python接口接入
- L2.1.3 BOT工具类框架
- L2.1.4 代码示例
- L2.2 Prompt框架
- L2.3 流水线工程
- L2.4 总结与展望
阶段3:AI大模型应用架构实践
-
目标:深入理解AI大模型的应用架构,并能够进行私有化部署。
-
内容:
- L3.1 Agent模型框架
- L3.2 MetaGPT
- L3.3 ChatGLM
- L3.4 LLAMA
- L3.5 其他大模型介绍
阶段4:AI大模型私有化部署
-
目标:掌握多种AI大模型的私有化部署,包括多模态和特定领域模型。
-
内容:
- L4.1 模型私有化部署概述
- L4.2 模型私有化部署的关键技术
- L4.3 模型私有化部署的实施步骤
- L4.4 模型私有化部署的应用场景
这份 LLM大模型资料
包括LLM大模型书籍、640套大模型行业报告、LLM大模型学习视频、LLM大模型学习路线、开源大模型学习教程
等, 😝有需要的小伙伴,可以 扫描下方二维码领取🆓↓↓↓