大家好!我是一名软件开发者,一直在寻找能让工作更轻松、项目更酷的工具。科技世界日新月异——有时候快得让人应接不暇——所以要跟上每一个新冒出来的东西真的挺难的。这也是我一直钟情于开源项目的原因:它们免费、灵活,还有一群像是随时待命的编程伙伴般的社区支持。
过去几个月里,我深入研究了一些真正令人印象深刻的开源AI工具,现在想把我心目中的前十名分享给你。这些可不是随便挑的——我选择它们,是因为它们涵盖了各种AI的精彩内容,从数据处理到语音技术一应俱全。我希望你能从中至少发现一个能为你的下一个大项目带来灵感。那我们开始吧!
1. MindsDB —— 让数据与AI默契协作
我是在为一个副项目处理混乱的公司数据时偶然发现MindsDB的。它是一个开源工具,可以让你通过查询系统将数据与AI模型连接起来,说实话,这个系统真的挺天才的。
我喜欢它的理由:你可以用SQL同时与数据和AI进行交互,它几乎可以连接任何东西(数据库、文件,等等),还内置了自动化功能,能保持系统高效运行。社区也非常给力——我有好几次就是靠着他们的论坛才摆脱困境。如果你热衷于构建智能应用,这个工具绝对值得一试。
2. Ivy —— 跨框架切换不再痛苦
如果你曾经想在 PyTorch 和 TensorFlow 等机器学习框架之间切换,却又不想重写整个代码库,Ivy 就是你的救星。它是开源的,而且……真的很好用。
我用它在不同的环境中测试模型,再也不用抓狂地重构代码。虽然它并不花哨,但在保持项目灵活性方面,它低调却极其出色。
3. Stable Diffusion WebUI —— 秒生成AI艺术
好吧,这个项目纯粹就是有趣。Stable Diffusion WebUI 是一个开源界面,可以让你用AI快速生成图像。我用它给自己的个人项目搞出了一些非常炫酷的视觉效果,操作超级简单。
如果你需要快速生成定制图像——或者只是想用一些迷幻风格的作品震撼朋友们——它就再合适不过了。部署轻松,效果惊艳。
4. Rasa —— 聊天机器人也能很聪明
每当我想做一个真正“懂你”的聊天机器人或语音助手时,我都会首选 Rasa。它是开源的,而且你可以完全掌控它的对话逻辑和思维方式的每一个细节。
上个月我用它做了一个简单的客服机器人,调试对话流程的过程比我预想的还要有趣。如果你对对话式AI感兴趣,一定要试试它。
5. OpenCV —— 让AI看懂世界
OpenCV 毫无疑问是计算机视觉领域的王者。这个开源库已经存在多年,里面集成了大量处理图像和视频的工具。
我曾用它在一个兴趣项目中实现视频画面中的动作追踪,效果简直像魔法一样。虽然入门有点陡峭,但一旦掌握了它的用法,你就能实现很多酷炫的视觉功能。
6. MLflow —— 驯服混乱的机器学习流程
MLflow 是一个开源工具,能帮我把机器学习实验从一团糟变成井井有条。它能记录我的实验过程,保存模型,并简化后续的部署流程。
我是在某个项目中发现自己完全记不清哪组参数效果最好时开始用它的。现在它就像我的机器学习“记忆库”一样——实用至上,毫不花哨。
7. KNIME —— 数据流程搭建,无需写代码
KNIME 是一个非常酷的开源工具,你可以通过拖拽模块来构建数据处理流程。对数据爱好者来说,这就像是在玩乐高积木。
我曾用它帮朋友的初创公司分析销售数据,通过可视化的方式一目了然,发现数据规律变得轻松多了。你当然可以写代码,但完全不写也能搞定一切。
8. Prefect —— 稳如老狗的数据管道
Prefect 是一个开源工具,用来构建坚固可靠的数据处理流程。就算出点小差错,它也不会立刻崩掉。它自带调度功能和异常处理机制。
我曾用它搭了一个自动处理日志的管道,已经稳定运行了好几个星期。如果你厌倦了时刻盯着数据流程怕它出故障,那这个工具非常适合你。
9. Evidently —— 让模型诚实运行
Evidently 是一个开源工具,用来监控你的机器学习模型,一旦模型“出轨”就会提醒你。它生成的报告不仅实用,而且真的读得懂。
我用它来监测一个已经上线的模型,它提前发现了准确率的异常下滑,帮我及时避免了潜在问题。就像是你AI系统的忠诚守护犬。
10. Vapi —— 实现可行的语音AI
Vapi 是我最近在创建AI面试助手时发现的一个新工具,它专注于将语音功能添加到应用中。它还不是完全开源,但它的API是公开的,且开发者友好到让我忍不住要推荐它。
我用它做了一个语音控制的待办事项应用,没想到它运行起来竟然这么快。如果你对语音技术感兴趣,值得关注一下它——它有巨大的潜力。
最后
作为一名开发者,我一直在追寻那些能节省时间、激发创意,或者让我忍不住说“哇,这真棒”的工具。这10个项目做到了这一切,甚至更多。无论是 OpenCV 让我的网络摄像头变成玩具,还是 Vapi 让我能用语音与代码互动,它们都让我的工作和副业变得更加精彩。
如何系统的去学习大模型LLM ?
大模型时代,火爆出圈的LLM大模型让程序员们开始重新评估自己的本领。 “AI会取代那些行业
?”“谁的饭碗又将不保了?
”等问题热议不断。
事实上,抢你饭碗的不是AI,而是会利用AI的人。
继科大讯飞、阿里、华为
等巨头公司发布AI产品后,很多中小企业也陆续进场!超高年薪,挖掘AI大模型人才! 如今大厂老板们,也更倾向于会AI的人,普通程序员,还有应对的机会吗?
与其焦虑……
不如成为「掌握AI工具的技术人
」,毕竟AI时代,谁先尝试,谁就能占得先机!
但是LLM相关的内容很多,现在网上的老课程老教材关于LLM又太少。所以现在小白入门就只能靠自学,学习成本和门槛很高。
基于此,我用做产品的心态来打磨这份大模型教程,深挖痛点并持续修改了近70次后,终于把整个AI大模型的学习门槛,降到了最低!
在这个版本当中:
第一您不需要具备任何算法和数学的基础
第二不要求准备高配置的电脑
第三不必懂Python等任何编程语言
您只需要听我讲,跟着我做即可,为了让学习的道路变得更简单,这份大模型教程已经给大家整理并打包,现在将这份 LLM大模型资料
分享出来:包括LLM大模型书籍、640套大模型行业报告、LLM大模型学习视频、LLM大模型学习路线、开源大模型学习教程
等, 😝有需要的小伙伴,可以 扫描下方二维码领取🆓↓↓↓
一、LLM大模型经典书籍
AI大模型已经成为了当今科技领域的一大热点,那以下这些大模型书籍就是非常不错的学习资源。
二、640套LLM大模型报告合集
这套包含640份报告的合集,涵盖了大模型的理论研究、技术实现、行业应用等多个方面。无论您是科研人员、工程师,还是对AI大模型感兴趣的爱好者,这套报告合集都将为您提供宝贵的信息和启示。(几乎涵盖所有行业)
三、LLM大模型系列视频教程
四、LLM大模型开源教程(LLaLA/Meta/chatglm/chatgpt)
五、AI产品经理大模型教程
LLM大模型学习路线 ↓
阶段1:AI大模型时代的基础理解
-
目标:了解AI大模型的基本概念、发展历程和核心原理。
-
内容:
- L1.1 人工智能简述与大模型起源
- L1.2 大模型与通用人工智能
- L1.3 GPT模型的发展历程
- L1.4 模型工程
- L1.4.1 知识大模型
- L1.4.2 生产大模型
- L1.4.3 模型工程方法论
- L1.4.4 模型工程实践
- L1.5 GPT应用案例
阶段2:AI大模型API应用开发工程
-
目标:掌握AI大模型API的使用和开发,以及相关的编程技能。
-
内容:
- L2.1 API接口
- L2.1.1 OpenAI API接口
- L2.1.2 Python接口接入
- L2.1.3 BOT工具类框架
- L2.1.4 代码示例
- L2.2 Prompt框架
- L2.3 流水线工程
- L2.4 总结与展望
阶段3:AI大模型应用架构实践
-
目标:深入理解AI大模型的应用架构,并能够进行私有化部署。
-
内容:
- L3.1 Agent模型框架
- L3.2 MetaGPT
- L3.3 ChatGLM
- L3.4 LLAMA
- L3.5 其他大模型介绍
阶段4:AI大模型私有化部署
-
目标:掌握多种AI大模型的私有化部署,包括多模态和特定领域模型。
-
内容:
- L4.1 模型私有化部署概述
- L4.2 模型私有化部署的关键技术
- L4.3 模型私有化部署的实施步骤
- L4.4 模型私有化部署的应用场景
这份 LLM大模型资料
包括LLM大模型书籍、640套大模型行业报告、LLM大模型学习视频、LLM大模型学习路线、开源大模型学习教程
等, 😝有需要的小伙伴,可以 扫描下方二维码领取🆓↓↓↓