2025如何学习Agent?谷歌重磅发布Agent白皮书(附PDF)

2025 年将是 AI Agent 发展的重要一年。

谷歌最近发布了一篇关于 Agent 的白皮书。以下是白皮书的主要内容:

  • AI Agent 简介

  • 工具在 Agent 中的角色

  • 通过针对性学习提升模型性能

  • 使用 LangChain 快速上手智能体

  • 利用 Vertex AI Agents 构建生产级应用

这是学习 AI Agent 的绝佳起点

✅ 什么是 Agent ?

他们将生成式 AI Agent 定义为“一个通过观察世界并利用其可用工具采取行动来实现目标的应用程序。”

图片

⭐️ 组件

以下是通用 Agent 架构及其组件的概览:

  • 用于驱动决策的模型

  • 与外部数据和服务交互的工具

  • 用于管理 Agent 如何获取信息、进行推理/规划并采取行动的协调机制

图片

🆚 模型 V.S. Agent

以下是一张清晰的对比表,用于理解独立模型与 Agent 之间的区别。

图片

🧠 具备 ReAct 推理的 Agent

以下是一个在协调层中使用 ReAct 推理构建的 Agent 示例。它通过 1 到 n 次的循环进行思考、采取行动(伴随输入)和观察,并且可以访问关键工具来尝试完成任务。

图片

🔗 扩展

扩展以标准化的方式弥合 Agent 与 API 之间的差距。它能够帮助 Agent 根据用户的请求决定选择哪个 API。

图片

🧑‍💻 函数

函数支持在客户端执行 API 调用,并为开发者提供更大的控制权。

图片

💡 函数调用生命周期

一张非常有趣的图表展示了函数调用的生命周期。请注意,函数本身并不直接与 API 交互。客户端会拦截 JSON 数据并发起 API 调用,然后将结果用于 Agent 的最终响应。

图片

🗄️ 数据存储

通过向量数据库提供对结构化和非结构化数据的访问。
 

图片

💡 关于数据存储的更多信息

数据存储通常以向量数据库的形式实现。同时,还可以提供各种格式的数据给 Agent。

图片

🧩 RAG

关于 RAG 的内容不多,但这张图总结了一个典型的 Agentic RAG 系统的样子。Agent 可以包含从推理循环到访问帮助增强检索数据的工具等多个组件。

图片

  如何系统的去学习大模型LLM ?

大模型时代,火爆出圈的LLM大模型让程序员们开始重新评估自己的本领。 “AI会取代那些行业?”“谁的饭碗又将不保了?”等问题热议不断。

事实上,抢你饭碗的不是AI,而是会利用AI的人。

科大讯飞、阿里、华为等巨头公司发布AI产品后,很多中小企业也陆续进场!超高年薪,挖掘AI大模型人才! 如今大厂老板们,也更倾向于会AI的人,普通程序员,还有应对的机会吗?

与其焦虑……

不如成为「掌握AI工具的技术人」,毕竟AI时代,谁先尝试,谁就能占得先机!

但是LLM相关的内容很多,现在网上的老课程老教材关于LLM又太少。所以现在小白入门就只能靠自学,学习成本和门槛很高。

基于此,我用做产品的心态来打磨这份大模型教程,深挖痛点并持续修改了近70次后,终于把整个AI大模型的学习门槛,降到了最低!

在这个版本当中:

第一您不需要具备任何算法和数学的基础
第二不要求准备高配置的电脑
第三不必懂Python等任何编程语言

您只需要听我讲,跟着我做即可,为了让学习的道路变得更简单,这份大模型教程已经给大家整理并打包,现在将这份 LLM大模型资料 分享出来:包括LLM大模型书籍、640套大模型行业报告、LLM大模型学习视频、LLM大模型学习路线、开源大模型学习教程等, 😝有需要的小伙伴,可以 扫描下方二维码领取🆓↓↓↓

一、LLM大模型经典书籍

AI大模型已经成为了当今科技领域的一大热点,那以下这些大模型书籍就是非常不错的学习资源。

在这里插入图片描述

二、640套LLM大模型报告合集

这套包含640份报告的合集,涵盖了大模型的理论研究、技术实现、行业应用等多个方面。无论您是科研人员、工程师,还是对AI大模型感兴趣的爱好者,这套报告合集都将为您提供宝贵的信息和启示。(几乎涵盖所有行业)
在这里插入图片描述

三、LLM大模型系列视频教程

在这里插入图片描述

四、LLM大模型开源教程(LLaLA/Meta/chatglm/chatgpt)

在这里插入图片描述

五、AI产品经理大模型教程

在这里插入图片描述

LLM大模型学习路线 

阶段1:AI大模型时代的基础理解

  • 目标:了解AI大模型的基本概念、发展历程和核心原理。

  • 内容

    • L1.1 人工智能简述与大模型起源
    • L1.2 大模型与通用人工智能
    • L1.3 GPT模型的发展历程
    • L1.4 模型工程
    • L1.4.1 知识大模型
    • L1.4.2 生产大模型
    • L1.4.3 模型工程方法论
    • L1.4.4 模型工程实践
    • L1.5 GPT应用案例

阶段2:AI大模型API应用开发工程

  • 目标:掌握AI大模型API的使用和开发,以及相关的编程技能。

  • 内容

    • L2.1 API接口
    • L2.1.1 OpenAI API接口
    • L2.1.2 Python接口接入
    • L2.1.3 BOT工具类框架
    • L2.1.4 代码示例
    • L2.2 Prompt框架
    • L2.3 流水线工程
    • L2.4 总结与展望

阶段3:AI大模型应用架构实践

  • 目标:深入理解AI大模型的应用架构,并能够进行私有化部署。

  • 内容

    • L3.1 Agent模型框架
    • L3.2 MetaGPT
    • L3.3 ChatGLM
    • L3.4 LLAMA
    • L3.5 其他大模型介绍

阶段4:AI大模型私有化部署

  • 目标:掌握多种AI大模型的私有化部署,包括多模态和特定领域模型。

  • 内容

    • L4.1 模型私有化部署概述
    • L4.2 模型私有化部署的关键技术
    • L4.3 模型私有化部署的实施步骤
    • L4.4 模型私有化部署的应用场景

这份 LLM大模型资料 包括LLM大模型书籍、640套大模型行业报告、LLM大模型学习视频、LLM大模型学习路线、开源大模型学习教程等, 😝有需要的小伙伴,可以 扫描下方二维码领取🆓↓↓↓

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值