五一小长假来临,你还在为做攻略焦头烂额?做攻略时,收藏夹堆成山;导航时:直线距离 600 米,跟着导航绕出 3 公里;到了后:景不对图,网红景点滤镜拉满。
别担心,现在人人可以成为旅游达人!我们用当下最火的高德 MCP + 星火 X1 制作了一个私人行程规划师;还进阶多智能体框架 CAMEL + 星火 X1,打造真正的“AI 导游天团”,彻底颠覆传统旅游方式!
Agent 使用地址:https://udify.app/chat/WtfvOfoxARHN4oGX
Multi-agent 开源项目地址:https://github.com/datawhalechina/handy-multi-agent
Agent 智能体:你的私人行程规划师
核心能力:
-
需求精准解析:支持 "非特种兵版武汉游" 等模糊需求输入,自动锁定黄鹤楼、东湖等经典景点
-
多工具协同作业:通过 6 轮 MCP 工具调用完成景点检索→定位→路线串联全流程
-
结构化输出:自动生成含门票价格、交通耗时、美食推荐的全要素攻略(实测生成三天武汉游完整方案)
技术突破点:
-
讯飞星火 X1 展现强大任务拆解能力,自主规划 maps_text_search→maps_geo 工具调用链路。
-
在国产算力支持下实现复杂指令跟随(严格匹配 MCP 服务器参数规范)
实际演示与工作流讲解
星火 X1 给出的这份“非特种兵版”武汉旅游攻略挺不错的,武汉的主要景点黄鹤楼、湖北省博、东湖、江汉路步行街等等都给出来了,并且也给出了景点的门票价格,经典之间的交通方式和交通花费时间,甚至也给出了美食攻略。我们来看下星火 X1 是如何使用 MCP 来完成这份旅游攻略的呢?
旅游 Agent 的整体结构如下所示,MCP 的选择和使用部分都在 Agent 节点进行处理。
星火 X1 进行了六轮迭代调用,我们看看星火 X1 都做了什么吧~
第一步:使用 MCP 服务器中的 maps_text_search 工具查询武汉的热门景点有哪些。
第二步:使用 MCP 服务器中的 maps_geo 工具获取黄鹤楼的具体地点。
第三步:使用 MCP 服务器中的 maps_geo 工具获取湖北省博的具体地点。
第四步:使用 MCP 服务器中的 maps_geo 工具获取东湖听涛区的具体地点。
第五步:使用 MCP 服务器中的 maps_geo 工具获取汉口江滩的具体地点。
最后一步:整理以上的位置信息,制定武汉旅游攻略!
星火 X1 首先搜索武汉所有的热门景点,然后从中挑选了四个主要景点进行旅行规划,在最后的调用中整合前面得到的景点信息,星火 X1 制定了一份近乎完美的武汉三天非特种兵版旅行攻略。
制定一份这样的攻略需要模型具备很强的规划能力(合适的 MCP 工具调用顺序)、逻辑推理能力(理解用户的需求)、指令跟随能力(按照 MCP 服务器的参数进行调用)等等。综合来说星火 X1 的数学、代码、逻辑推理、文本生成、语言理解、知识问答能力提升,实至名归!
👍
动手能力强的小伙伴可以在 Dify 平台直接导入这份旅行攻略大师的 DSL 文件自行体验~
需要去高德地图开放平台获取一个 Key 哦~
https://lbs.amap.com/api/mcp-server/create-project-and-key
Multi-Agent 多智能体:你的 AI 导游天团
角色-任务-大模型能力对照表:
实际演示与完整工作流讲解教程
讯飞星火X1:规划师和导游团的 AI 大脑
根据前几天官方的介绍,讯飞星火 X1 在数学、代码、逻辑推理、文本生成、语言理解、知识问答等通用任务效果显著提升,在模型参数比业界同类模型小一个数量级的情况下,整体效果对标 OpenAI o1 和 DeepSeek R1,再次证明了基于国产算力训练的全栈自主可控大模型具备登顶业界最高水平的实力和持续创新的潜力。
在算力困局加剧、芯片技术"卡脖子"风险持续攀升的特殊时期,每一项基于国产算力的自研AI大模型突破都值得密切关注。
在 MCP 和 多智能体的场景下,讯飞星火 X1 作为两个系统的大脑,真正做到了:
-
精准理解用户没说出口的需求
-
智能协调多个工具 / 数据源
-
动态生成带人情味的方案
-
应对突发情况灵活调整
从今天起,你的每次旅程都是中国 AI 技术的里程碑。
如何系统的去学习大模型LLM ?
大模型时代,火爆出圈的LLM大模型让程序员们开始重新评估自己的本领。 “AI会取代那些行业
?”“谁的饭碗又将不保了?
”等问题热议不断。
事实上,抢你饭碗的不是AI,而是会利用AI的人。
继科大讯飞、阿里、华为
等巨头公司发布AI产品后,很多中小企业也陆续进场!超高年薪,挖掘AI大模型人才! 如今大厂老板们,也更倾向于会AI的人,普通程序员,还有应对的机会吗?
与其焦虑……
不如成为「掌握AI工具的技术人
」,毕竟AI时代,谁先尝试,谁就能占得先机!
但是LLM相关的内容很多,现在网上的老课程老教材关于LLM又太少。所以现在小白入门就只能靠自学,学习成本和门槛很高。
基于此,我用做产品的心态来打磨这份大模型教程,深挖痛点并持续修改了近70次后,终于把整个AI大模型的学习门槛,降到了最低!
在这个版本当中:
第一您不需要具备任何算法和数学的基础
第二不要求准备高配置的电脑
第三不必懂Python等任何编程语言
您只需要听我讲,跟着我做即可,为了让学习的道路变得更简单,这份大模型教程已经给大家整理并打包,现在将这份 LLM大模型资料
分享出来:包括LLM大模型书籍、640套大模型行业报告、LLM大模型学习视频、LLM大模型学习路线、开源大模型学习教程
等, 😝有需要的小伙伴,可以 扫描下方二维码领取🆓↓↓↓
一、LLM大模型经典书籍
AI大模型已经成为了当今科技领域的一大热点,那以下这些大模型书籍就是非常不错的学习资源。
二、640套LLM大模型报告合集
这套包含640份报告的合集,涵盖了大模型的理论研究、技术实现、行业应用等多个方面。无论您是科研人员、工程师,还是对AI大模型感兴趣的爱好者,这套报告合集都将为您提供宝贵的信息和启示。(几乎涵盖所有行业)
三、LLM大模型系列视频教程
四、LLM大模型开源教程(LLaLA/Meta/chatglm/chatgpt)
五、AI产品经理大模型教程
LLM大模型学习路线 ↓
阶段1:AI大模型时代的基础理解
-
目标:了解AI大模型的基本概念、发展历程和核心原理。
-
内容:
- L1.1 人工智能简述与大模型起源
- L1.2 大模型与通用人工智能
- L1.3 GPT模型的发展历程
- L1.4 模型工程
- L1.4.1 知识大模型
- L1.4.2 生产大模型
- L1.4.3 模型工程方法论
- L1.4.4 模型工程实践
- L1.5 GPT应用案例
阶段2:AI大模型API应用开发工程
-
目标:掌握AI大模型API的使用和开发,以及相关的编程技能。
-
内容:
- L2.1 API接口
- L2.1.1 OpenAI API接口
- L2.1.2 Python接口接入
- L2.1.3 BOT工具类框架
- L2.1.4 代码示例
- L2.2 Prompt框架
- L2.3 流水线工程
- L2.4 总结与展望
阶段3:AI大模型应用架构实践
-
目标:深入理解AI大模型的应用架构,并能够进行私有化部署。
-
内容:
- L3.1 Agent模型框架
- L3.2 MetaGPT
- L3.3 ChatGLM
- L3.4 LLAMA
- L3.5 其他大模型介绍
阶段4:AI大模型私有化部署
-
目标:掌握多种AI大模型的私有化部署,包括多模态和特定领域模型。
-
内容:
- L4.1 模型私有化部署概述
- L4.2 模型私有化部署的关键技术
- L4.3 模型私有化部署的实施步骤
- L4.4 模型私有化部署的应用场景
这份 LLM大模型资料
包括LLM大模型书籍、640套大模型行业报告、LLM大模型学习视频、LLM大模型学习路线、开源大模型学习教程
等, 😝有需要的小伙伴,可以 扫描下方二维码领取🆓↓↓↓