什么是MCP?技术原理是什么?教你15分钟配置本地MCP服务

引言

在人工智能(AI)快速发展的今天,AI模型与外部工具的集成成为提升工作效率的关键。然而,传统集成方式存在接口碎片化、开发成本高、安全风险大等问题。为解决这些痛点,MCP(Model Context Protocol,模型上下文协议)应运而生。作为一种开放标准协议,MCP为AI模型与外部工具之间建立了标准化连接通道,推动了AI从“孤立文本生成”向“行动代理”的进化。

image-20250515182853571

MCP是什么?

MCP全称:模型上下文协议Model Context Protocol,由Claude的母公司Anthropic推出的开源协议,旨在实现大型语言模型(LLM)与外部数据源和工具的集成,提供安全双向的连接。MCP通过统一的接口标准化了应用程序向LLM提供上下文的方式。

MCP的核心定位是为大型语言模型(LLM)与外部数据源、工具之间提供统一接口,实现标准化连接。其设计理念类似于“AI领域的USB-C接口”,通过协议标准化,打破数据孤岛,避免为每个数据源单独开发定制化连接器,从而降低开发成本和安全风险。

核心功能

作为 AI 大模型的标准化工具箱,允许大模型通过标准化协议与外部工具(如浏览器、文件系统、数据库、代码仓库等)自动化交互,无需手动复制粘贴信息。

MCP Server:作为 AI 与外部工具的中间层,专精于一类工作(如读写浏览器、操作 Git 仓库等),本质是运行在本地(Node.js/Python 程序)或服务器的程序。

**交互方式:**大模型通过操作系统的标准输入通道(stdio)调用 MCP Server,消息格式为特定 JSON 结构,MCP Server 通过代码或 API 访问外部工具完成任务。

传统方式

看图,传统方式需要手动截图或者复制文档,将浏览器、github、数据库等复制粘贴到AI窗口中进行对话。

image-20250515164613039

(图来自技术爬爬虾)

经过MCP servers,则通过标准化协议自动化了上面的流程。

image-20250515164700031

MCP 与 Function Call 的区别

优势:整合了各家大模型不同的 Function Call 标准,形成统一协议,支持几乎所有大模型接入(如 Claude、Deepseek 等)。

**MCP:**是 Anthropic 提出的标准化通信协议,类比为 “AI 领域的 HTTP 协议” 或 “通用插座”“USB-C 标准”。它规定了上下文与请求的结构化传递方式,要求通信格式符合 JSON-RPC 2.0 标准,用于统一 LLM 与外部数据源、工具之间的交互规范,解决数据孤岛问题。

**Function Call:**是某些大模型(如 OpenAI 的 GPT-4)提供的特有接口特性,类似 “品牌专属充电协议”。它以特定格式让 LLM 产出函数调用请求,由宿主执行对应操作并返回结果。

安装Cline

安装vscode,再安装Cline插件

下载安装vscode

如果下载了请忽略这一步

下载地址: https://code.visualstudio.com/

image-20250515170757463

安装cline

左侧找到插件,搜索cline

image-20250515170853172

点击安装,把cline插件安装

image-20250515170927363

设置大模型

点击use your own api key

image-20250515171120524

再点击,get openrouter api key

image-20250515171302283

再弹窗浏览器中

image-20250515171351407
image-20250515171510325

点击打开Visual Studio Code,这时候openrouter api key 自动填写了

再选择 deepseek/deepseek-chat:free 免费的大模型,再点击保存。

image-20250515172319771

再提问是否配置成功,如果有回答则说明配置成功。

image-20250515172414492

安装nodejs

MCP servers 本质就是运行在电脑上的一个nodejs程序,所以nodejs环境必不可少

nodejs下载: https://nodejs.org/zh-cn

image-20250515172818087
安装软件一路点下一步。

安装完成之后

代码语言:javascript

代码运行次数:0

运行

node -v
npx -v

如果都能成功的输出版本号,nodejs环境则安装成功。

image-20250515172948746

安装第一个MCP服务

回到 Cline中,点击 MCP Servers

image-20250515173128566

安装github MCP Servers

点击 install 安装

image-20250515173320331

会自动打开AI的窗口

image-20250515173402829

创建token

点击approve,再点击github的链接创建tokens

image-20250515173549484

创建token

image-20250515173747451
新建token之后,把token复制下来

image-20250515175313886

把token粘贴到cline中,点回车,再点save

image-20250515175504648
MAC系统这步就完成了,Window电脑还需要改一些配置

修改配置

代码语言:javascript

代码运行次数:0

运行

{
  "mcpServers": {
    "github.com/modelcontextprotocol/servers/tree/main/src/github": {
      "command": "npx",
      "args": [
        "-y",
        "@modelcontextprotocol/server-github"
      ],
      "env": {
        "GITHUB_PERSONAL_ACCESS_TOKEN": "ghp_XXXXXXX"
      },
      "disabled": false,
      "autoApprove": []
    }
  }
}
​

改成

代码语言:javascript

代码运行次数:0

运行

{
  "mcpServers": {
    "github.com/modelcontextprotocol/servers/tree/main/src/github": {
      "command": "cmd",
      "args": [
        "/c",
        "npx",
        "-y",
        "@modelcontextprotocol/server-github"
      ],
      "env": {
        "GITHUB_PERSONAL_ACCESS_TOKEN": "ghp_XXXXXXXXX"
      },
      "disabled": false,
      "autoApprove": []
    }
  }
}
​

如图,点击保存

image-20250515175933460

在已安装中查看

image-20250515180012619

自动创建test-repo的github仓库

点击Approve 会

image-20250515180339190

再查看我的github中创建了一个 test-repo的仓库。

image-20250515180956668

提问“我的名字是funet8,我在github中有哪些仓库”

输出结果

image-20250515181347599

结尾

MCP通过标准化交互协议,打通了AI与工具间的壁垒,为高效、安全的智能自动化奠定了基础,是AI技术实用化的重要里程碑。随着MCP的普及,AI将更加深入地融入各个行业,成为真正的数字工作流协作者。未来,MCP有望推动构建可组合的智能系统,让人类通过自然语言指令驱动复杂工具链,重塑软件开发、设计及自动化流程。

无论是开发者还是普通用户,掌握MCP的配置和使用方法,都将为你在AI时代的工作和学习带来巨大的便利。赶快行动起来,体验MCP带来的智能化变革吧!

如何系统的去学习大模型LLM ?

大模型时代,火爆出圈的LLM大模型让程序员们开始重新评估自己的本领。 “AI会取代那些行业?”“谁的饭碗又将不保了?”等问题热议不断。

事实上,抢你饭碗的不是AI,而是会利用AI的人。

科大讯飞、阿里、华为等巨头公司发布AI产品后,很多中小企业也陆续进场!超高年薪,挖掘AI大模型人才! 如今大厂老板们,也更倾向于会AI的人,普通程序员,还有应对的机会吗?

与其焦虑……

不如成为「掌握AI工具的技术人」,毕竟AI时代,谁先尝试,谁就能占得先机!

但是LLM相关的内容很多,现在网上的老课程老教材关于LLM又太少。所以现在小白入门就只能靠自学,学习成本和门槛很高。

基于此,我用做产品的心态来打磨这份大模型教程,深挖痛点并持续修改了近70次后,终于把整个AI大模型的学习门槛,降到了最低!

在这个版本当中:

第一您不需要具备任何算法和数学的基础
第二不要求准备高配置的电脑
第三不必懂Python等任何编程语言

您只需要听我讲,跟着我做即可,为了让学习的道路变得更简单,这份大模型教程已经给大家整理并打包,现在将这份 LLM大模型资料 分享出来:包括LLM大模型书籍、640套大模型行业报告、LLM大模型学习视频、LLM大模型学习路线、开源大模型学习教程等, 😝有需要的小伙伴,可以 扫描下方二维码领取🆓↓↓↓

👉CSDN大礼包🎁:全网最全《LLM大模型入门+进阶学习资源包》免费分享(安全链接,放心点击)👈

一、LLM大模型经典书籍

AI大模型已经成为了当今科技领域的一大热点,那以下这些大模型书籍就是非常不错的学习资源。

在这里插入图片描述

二、640套LLM大模型报告合集

这套包含640份报告的合集,涵盖了大模型的理论研究、技术实现、行业应用等多个方面。无论您是科研人员、工程师,还是对AI大模型感兴趣的爱好者,这套报告合集都将为您提供宝贵的信息和启示。(几乎涵盖所有行业)
在这里插入图片描述

三、LLM大模型系列视频教程

在这里插入图片描述

四、LLM大模型开源教程(LLaLA/Meta/chatglm/chatgpt)

在这里插入图片描述

五、AI产品经理大模型教程

在这里插入图片描述

LLM大模型学习路线

阶段1:AI大模型时代的基础理解

  • 目标:了解AI大模型的基本概念、发展历程和核心原理。

  • 内容

    • L1.1 人工智能简述与大模型起源
    • L1.2 大模型与通用人工智能
    • L1.3 GPT模型的发展历程
    • L1.4 模型工程
    • L1.4.1 知识大模型
    • L1.4.2 生产大模型
    • L1.4.3 模型工程方法论
    • L1.4.4 模型工程实践
    • L1.5 GPT应用案例

阶段2:AI大模型API应用开发工程

  • 目标:掌握AI大模型API的使用和开发,以及相关的编程技能。

  • 内容

    • L2.1 API接口
    • L2.1.1 OpenAI API接口
    • L2.1.2 Python接口接入
    • L2.1.3 BOT工具类框架
    • L2.1.4 代码示例
    • L2.2 Prompt框架
    • L2.3 流水线工程
    • L2.4 总结与展望

阶段3:AI大模型应用架构实践

  • 目标:深入理解AI大模型的应用架构,并能够进行私有化部署。

  • 内容

    • L3.1 Agent模型框架
    • L3.2 MetaGPT
    • L3.3 ChatGLM
    • L3.4 LLAMA
    • L3.5 其他大模型介绍

阶段4:AI大模型私有化部署

  • 目标:掌握多种AI大模型的私有化部署,包括多模态和特定领域模型。

  • 内容

    • L4.1 模型私有化部署概述
    • L4.2 模型私有化部署的关键技术
    • L4.3 模型私有化部署的实施步骤
    • L4.4 模型私有化部署的应用场景

这份 LLM大模型资料 包括LLM大模型书籍、640套大模型行业报告、LLM大模型学习视频、LLM大模型学习路线、开源大模型学习教程等, 😝有需要的小伙伴,可以 扫描下方二维码领取🆓↓↓↓

👉CSDN大礼包🎁:全网最全《LLM大模型入门+进阶学习资源包》免费分享(安全链接,放心点击)👈

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值